- .-

UNCLASSIFIED

)

e FurF CORY

l .

-ECTE

AD-A201 921

h. 4

e

F‘MOCUMENTATION PAGE
1b. RESTRICTIVE MARKINGS

3. DISTRIBUTION/AVAILABILITY OF REPORT

Approved for public release;
distribution unlimited.

4. PERFORMING ORGANIZATION REPORT NUMBER(H

5. MONITORING ORGANIZATION REPORT NUMBERC(S)

L3214 2-ma-H

6a. NAME OF PERFORMING ORGANIZATION

Howard University

6b. OFFICE SYMBOL
(If applicable)

7a. NAME OF MONITORING ORGANIZATION

U. S. Army Research Office

6¢c. ADDRESS (City, State, and ZIP Code)

Washington, DC 20059

7b. ADDRESS (City, State, and ZIP Code)

P. 0. Box 12211
Research Triangle Park, NC 27709-2211

8a. NAME OF FUNDING / SPONSORING
ORGANIZATION

8b. OFFICE SYMBOL
(if applicable)

9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

Research Triangle Park, NC 27709-2211

~ U. S. Army Research Office DAALO3-86~6-002S
8c. ADDRESS (City, State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS
PROGRAM PROJECT TASK WORK _UNIT
P. 0. Box 12211 ELEMENT NO. |NO. NO. ACCESSION NO.

11. TITLE (include Security Classification)
Analysis of Blending Algorithms in Computer

Graphics (Unclassified)

12. PERSONAL AUTHOR(S)

Dr. Ronald J. Leach
13a. It_YPE fF REPORT 13b. TIME COVERED 14. DATE OF REPORT (Year, Month, Day) ['S. PAGE COUNT
ina rrRoM 8/1/86 107/31/88 § October 17, 1988

16. SUPPLEMENTARY NOTATION

17. COSATI CODES
FIELD GROUP SUB-GROUP

minimal

The view, opinions and/or findings contained in this report are those
of _the authar(s),and shzuld not be, construed as an Qfficial P?ggrtment of the Army position,

18. SUBJECT TERMS (Continue on reverse if necessary and odermfy by block number)
computer graphics, solid modeling, blending surface,

produce surfaces which blend together other
has geometric significance.
tures; the best algorithms were determined.
information such as minimizing surface area

9. ABSTRACT (Continue on reverse if necessary and identify by block number)
The research on this project was directed towards determination of fast algorithms which

Many display algorithms were analyzed for numerous architec-

evaluation of certain surfaces were discovered.

surfaces and for which the blending surface

Blending surfaces which incorporated geometric
were studied. New degrees of freedom in the

20. DISTRIBUTION / AVAILABILITY OF ABSTRACT

BJuncLassirieorunumiTed O saME As RPT. CJ oTIC USERS

21. ABSTRACT SECURITY CLASSIFICATION
Unclassified

22a. NAME OF RESPONSIBLE INDIVIDUAL
Ronald J. Leach

22b. TELEPHONE (Include Area Code)

(202)636-6650 72¢. OFFICE SYMBOL

DD FORM 1473, samar

83 APR edition may be used until exhausted.
All other editions are obsolete.

SECURITY CLASSIFICATION OF THIS PAGE
UNCLASSIFIED

|

w

e, abioine By Sacade B eraiia el

L o ARO 23714-7-mA-H

ANALYSIS OF BLENDING ALGORITHMS
IN COMPUTER GRAPHICS

FINAL REPORT

OCTOBER 19, 1988

U.S. ARMY RESEARCH OFFICE

DAAL 03-86-G~0085

HOWARD UNIVERSITY

Y

(3

88 11z °

w

PROJECT DESCRIPTION S
S
i j"

u INTRODUCTION L_'f_(,,,_J

The research on this project céntered around the analysis,
development, and implementation of, algorlthms for representing a
surface which blends together two or more intersecting
surfaces. The blending surface should provide a smoother
transition than is available when simply considering the
intersection of the surfaces. The algorithms developed must be
efficient because the major portion of computing time in a solid
modeling system should be devoted to the important problems of
data representation, object display, surface analysis (ray
tracing, shadowing, etc.) and scene analysic (hidden
line/surface removal, etc.) The important features of a
blending surface are speed of computation, ability to be
incorporated into the other features of a solid modeling system
(such as hidden line/surface removal), and the visual quality of
the blended image. -

. .] s . .
€This report is organized as follows. Section 1 is an
introduction. Section 2 briefly describes some basic concepts
from solid modeling. Section 3 is a description of the
organization of the research, major findings, and publications.
Section 4 describes additional d1rect10ns for research.

' ’ {, ’ ¥ »’J fﬁﬂ¥'{j: Jr} /;/E—
TR (G A e b /

Nt
1Ynd

Accession For ’
NTIS CPA&I]
DTIC Tak O
Ui ounced .

] Just.“tentton

Z
Q310349

Al

‘
| — [
|

, By

}__Ll”‘r tution/ o
i Availability Ccdes

Svatl q4na,/cr

", N

1Dist

p! %

S ot S U UV S

o e
“ ".-Au

2. CSOME CONCEPTS FROM SOLID MODELING

Computer aided design (CAD) systems depend upon
representations of solid objects which use an abstract,
geometrical model rather than simply representing them as
collections of pixels displayed on a CRT screen. There are
several common methods for modeling geometric information, each
with its own advantages and disadvantages. The most common
methods are the boundary representation in which an object is
described by its boundary; constructive solid geometry, in which
an object is described by its boundary; constructive solid
geometry, in which an object is described by an algorithm for
constructing it from geometric premitives such as speheres or
boxes; and a data-structured oriented method such as octrees, in
which an object is described by the portions of space it
occupies.

Each of these methods admits additional refinements. For
example, the boundary representation of a single surface may be
given by the implicit representation F (x,y,z)=0, the explicit
representation of the form z=f(x,y) which is obtained by solving
the implicit equation (where possible and where a unique
solution exists),and the explicit parametric representation
where x,y, and 2z are described by a set of parametric equations.

The implicit representation is convenient for finding the
intersection of two surfaces. However, the other methods are
often more convenient for actually graphing objects.

Research during the project period has centered on the
boundary representation method using all three of the techniques
of implicit and explicit surface description.

8

3. SUMMARY OF RESEARCH FINDINGS

The research on this problem has taken two directions:
efficiency of computational algorithms and
development/implementation of mathematical models.

The research on the efficiency of computational algorithms
has reinforced a well-known phenomenon in computer graphics -
that very high speed cpu's, parallel/distributed processing, or
specialized graphics hardware are frequently necessary for
responsive systems. In the paper "Evaluating the Performance of
a User Interface" (Computes and Graphics volume 11 no. 2 (1987),
141-146), algorithms for evaluating performance of display
systems (especially window display and menu selection systems)
were given., These algorithms are appropriate for general
systems, with no particular emphasis on solid modeling systems.

The primary focus of "Complexity of Computer Algorithms"
(Rocky Mountain J. Math volume 17 (1987), 167-187) was general
computer algorithms. However, particular algorithms for
polynomial evaluation via look-up tables and Tchebycheff
polynomials were also presented, Polynomial evaluation
algorithms are necessary for any method of graphical
representation using bicubic or similar patches. This work has
naturally lead to the study of special purpose parallel
algorithms for fast polynomial evaluation:

Publications in the area of parallel algorithms relevant to
computer graphics include "Ada Software Metric and Their
Limitations" (Proc. Joint Ada Conference, Washington, DC. (March
1987), 285-293) in which formal measuremnts of software
complexity were made, "Use of Concurrent Tasking Paradigms for
the Design of Ada Programs"(Proc 6th Annual Conference on Ada
Technology, Washington, D.C. (March 1988), 153-156) in which
formal models of concurrent/parallel programs were used, and
"Acutal Complexity of Parallel Evaluation of Low Degree
Polynomials" (being reviewed for publication) in which several
algorithms are evaluated. The first two papers mentioned in
this paragraph consider high-level algorithms while the third
paper is concerned with low level computations including counts
of memory accesses and inter-process communications. An
important result in that paper is that "efficiency" larger than
1 is possible for evaluation of cubic polynomials at multiple

points., The efficiency is defined here as
N*T(N)/T(1)

where T(1l) represents the time if one processor is used and T(N)
represents the time if N processors are used. This high
efficiency is based on a pipelined architecture based on
deCastlejan's algorithm.

Comparisons between this specialized architecture and
several algorithms such as Knuth's, Horner's and a finite
difference method are also given; none of the sequential,
non-pipelined algorithms achieve efficiency of 1.

N

An offshot of some of this work was two papers primarily on
education, "Experiences Teaching Concurrency in Ada" (Adaletters
vol. 7 no. 2 (1987), 40-41) and "A Suggested Topic for the First
Course in Computer Science" (SIGCSE Bulletin, vol 30, no. 2
(1988), 40-43).

The other research direction that was considered involved
the development/implementation of mathematical algorithms for
blending surfaces. The goal of this research was to allow the
inclusion of geometric information into blending surfaces. the
initial geometric information used was the minimization of the
surface area of the blending surface.

The first technique used was based on the observation that
any such blending surface which minimizes surface area must be a
minimal surface area must be a minimal surface, Minimal
surfaces are surfaces which satisfy the non-linear partial
differential equation

2

xzyzxy + zyy(1+zx) = 0
(assurming z is a function of x and y). For computational
purposes, the most appealing minimal surfaces for blending
purposes are those of low degree. Therefore the first objective
in this area of research was to obtain minimal surfaces of low
degree.

2
zxx(1+zy) -z

Surfaces of degree 3 or 4 hae been classified by Salmon as
falling into one of several classifications. The determination
of which of these low degree surfaces, if any, is a minimal
surface is a formidable computational problem. After applying
various simplifying transformations to the equations of the
surfaces, the equations were used as input to the symbolic
manipulation package MACSYMA for determining if the surface
satisfied the minimal surface equation. Results were obtained
for a few of the possible categories of surfaces; however,
problems with the disk drives of the computer prevented a
complete solution of the problem. (The computer hardware
problems have been documented in the most recent interim project
report. The disk drive problems generally made the use of large
virtual memory space impossible and thus only incomplete results
could be obtained because of the large intermediate size of
algebraic expressions given by MACSYMA before simplification).

Since only incomplete results were obtained in the search
for low degree minimal surfaces, with the implicity
representation, the project now considered the use of explicit
parametric representation. A classical result of Weierstrass

was used as the starting point - parametrizations of minimal
surfaces arise from integratﬁpg from O to z the functions .
(1-g7) w/2 %
(1+g2) w/2i
gw

where g and w are analytic functions on some domain. The
parameters are the real and imaginary parts of the independent
variable z. An important contribution here was the observation
that these analytic functions have additional degrees of freedom
which provide 6 additional degrees of freedom in the simplest
known surfaces (the Enneper's surface) and more for surfaces of
higher algebraic degree. This research is incorported in the
papers "Minimal Blending Surfaces" and "Geometric Considerations
in Blending Surfaces". Both of these papers have been submitted
for publication and are still in the reviewing process. Each of
these papers indicate the use of these minimal surfaces as
blending surfaces.

The papers have concentrated on simple problems in blending
surfaces which are sections of minimal surfaces. The additional
degrees of freedom mentioned above are used for curve fitting
and for visual appeal.

cy s R SR SN LR 8 20 O r RIS SR R L S S
Srete, e R SN N AN e AN AR L g -2 N
PP IO AP R Ll LR VDDA IO Tl FIINT RIS T=AN O} ZANEY SO, TR RN oy | O HI A N - PR

A ser . N

LR

4, FUTURE DIRECTIONS

Current work is directed towards using other geometrical
constraints such as minimizing additional volume due to blending
surfaces (with some tangency information added) and towards
using methods of the calculus of variations for problems posed
in terms of surfaces which are described parametrically. The
fundamental idea is to use a Ritz method to find good
approximate solutions which are in the class of low degree
surfaces. It is expected that results will be submitted for
publication by the end of 1988.

Additional work on the determination which of the surfaces
of degree 3 or 4 as minimal surfaces will be postponed until
sufficient reliable disk drive capacity becomes available.

APPENDIX 1

Students Supported

1. Sileshi Kassa
2. Darlene Bond
3. Michael Atogi
4, Robert Bennett

MS
MS
MS
no

Computer
Computer
Computer
graduate

Science May 1987
Science May 1988
Science June 1988
degree yet

APPENDIX 2

Final Budget

o

L8 Z8T'E _ 868 ~ €8€ 00} zZ9'L e9'L 95 ° 901 ¥¥S ' v01 IVi0L INNODDY |
L6 z8zT'e 668 €8¢ ‘001 TTO'L zZ9°L ¥9S° 901 95 y0i SaSN3dX3 IWViO0L
00} "88L70¢ 109 - 109 9sL o€ voz'zy O01N %06 @ 150D ONI 0006
004 4 TSy's B sy's 000°€ SM01134/SdIHSHYI0HOS
00} TSy's t{-TA] SAIHSYVIOHDS 010
0 } -~ Y 000°'€E NOLILINL
ze LT lov‘L 820'8 oze‘s INIWdIND3
00} 1oy'L toy'L IND3 JTINIIIS/HOUSIA 01 g
0 L9 LZe ozZE'S ANINAINDI 0009
[T] Lov 00z TeleT 6EL "} 6cl’l Tk 000'6 SISNIdX3 ¥ S3I1ddNS
001 000'€ 000°'€ $334/NLINL-1SD IFINYL OPZH
86 vee 008 '61 vel ‘0z N3dIL1S-S1S0O IINIVHL OIZ¥
(o] 000°E S$1S00 IINIVHL 00Z¥
00} __S8L'T 6EL ‘1L 6EL ') S6L'T 1153W00 ¥IH10-13IAVYEL OZO¥
0 €L €L 000°t J3AVHL 000F
00} 002 00T FWOLSH008 OE8E
00} o iy B ‘ by INON-WTJ°¥3d ‘' SN008 012
001 ovi ol 1dIND3 ¢ NuNJ YONIW 068
001 00z osl ose JYYMLIOS OZT
001 - 00S 00S ONILVII1dNA/INIADOD Oro
001 60} 60l $3I7ddNS 321440 O10Z
(+] 1 1 000°€ SISNIdX3 ¥ SIINddNS 0007
08 vie vLs’S €1z’ €1z 881 ‘9 TSy's S1IJ3N3E 33A0TdNI |
00} v.S'S 134 W E1Z°1 PLS'S S1143IN3I8 33A01dM3 01 6}
() 1Y) (1Y) Isr's MSS %9Z @ N38 14ViS 006}
€6 €€9°1 (11] 6EY 1T 90y 09°Y LLL'ET B80S ‘ZE YIHLO ‘SIDVM ' SITYVIVS |
00l) (1YY oLz'y 00t ‘L ASISSV "QVHD-ANVIVS OEZ}
0 00E‘L . ____ 00Z)
19 (1) oL L v’y X 698 LI SN0SS340¥d - WS Ivi 0101
0 TE9') ze9'‘l 806 'Ll NINGV-AYVIVS 000
pasn 319VIIVAV SININLINMOD ¥VIA 103Pr0¥d ¥VIA TVOSIJ HINOW ANVNND QISIAIY IYNIDINO NOI11dI¥9S30 3003
D¥3d _ IONVIVE N3O = -------memeeeeoo- WALIY-~=--m=mmmommmmmoe mc-o-- $1390N9-------- . |
"WON3 10 S€000 :1d3
© QIVNOY ' ¥A ‘HOVI 0L SHHLINODTV ONION3E 40 SISATVNY . OowLFT-S 120
GE000 6C = 1d3Q-NOISIALIG
d _ANNCIOVY 88/6Z/L0 ¥O0J SYVII00 310HM NI IN3WILVLIS ANNOIDY IH - 0OBOW8
- koowad 01 wvaOOoud : W3LSAS SOY0I3¥ WIDNVNI4 6V LIIZ N INI
OL8 3I9Vd 1¥0d3Y *x ALISYIAINDND OQUVMOH == £8/10/80 NN 31V
»(b B W R C#

ZIS9 ¥0 LOSH NOISNILXI TIvD SINIWLIWWOD ¥IHLIO HO4 (INVHD) ¥ESS ONV
‘A¥3IS) ¥BLS '(°ddNS) 1808 AX3 TIVD ‘SNIAWO ISVHOUNG NO SNOILSIND A0

£Z° 668 -L8°p¥ ¥Z°08¥ ‘0l 08°0ZE‘4I *s IVLI0L INNOJDY *» %
03137dW03 , -L8°v¥ OZ'BEL'Y EE¥60'H HOVIT P GTVNOY LO/90 ¢¥OZBIIL N OZOY-OPL¥Z-S
€T 868 0 LZE'6 LT°920°0t £ GTIVNOY ‘HOV31 E€1/S0 100000S N OLOL-OVLPZ-
00°00Z i 00°00Z NOILVINIWOD DITOSWAS 81/EQ QEVBELd N OTZT-OVLYZ-
ANNOWY SININ SIUNLIONIdX3 ANNOWV NOI1dI¥0S30 31va 'ON "4 1INNODDV
L ANTWIND -1SNrav ONILVAINDIT JVYNIDIHO L
SNLIVLS SINIWNLIWNCD N3dO
"SNOILS3IND HLIM S0S9 (X3 TvI ISVITd 160WEd NO SI 1IVi3d 3HL
SNOTLOVSNVYL HINOW 3ND ONILNOAANS ANNCOIV ¥NOA 40 ANVMNNS V SI SIHL
3asn 37EVI1IVAV SINIWLINWOD ¥V3IA 1031r0dd d¥VIA TVDISIJ HINOW INJNNAD Q3ISIAIY IYNIDINO NOILJINDS30 3002
bY3d 30NV IVE N3dQ --------- ittt WALV ----=-m=scmccmmcee ammmeo- $1390N8-------- an
‘WON3 10 SE000 :1d3
| P _GTVNOY ¥0 ‘HOVIY 0L e _SWHIINODTV SNION3ITE JO SISAIVNY . . O¥L¥T-S ‘12D
SE000 6Z = Ld3A-NOISIAIC
0Vd ANNOIDY 88/8Z/L0 ¥O4 S¥VII00 3710HM NI INIWILVIS INNODIV tH - osOME
‘EeONgJ QI WV¥O0ud W3LSAS SQU0D3N IVIONYNIJ 6V LI 1Z N NI
L8 3IDVd L¥OdIY ** ALISHUIAINN QGQUVMOH =2 88/10/80 N 31vQ

e N

C QIVNOY ¥ "HOV31 :04

SWHLINO0DTV ONIGN3TNE 40 SISATVNY

-68°LSL'S pZ°T29°L sxx TVL0L LINNODDV s
00° L08 O01IN %068 & 1SOD°'ONI Ti0L WO 000
|82.088 S6NDD1 00 LO9 N ¥J0080-9100¥-1 1600000 £560000 180 6Z/L0 88%021- NOOO
-EE ¥60°) 0z 6€L ‘) IASINOG ¥IHIO0-TIAVHL TVIOL WO OZOM
L0L0O88 9108d3 L8 ¥¥ _ _ yOTOLLL €S0 LO/LO HOV3Y QTVNOY¥ N
ﬂ—hOce ©960dv -0Z 6€! '} oz'6cl ‘i SYZOO¥ ¥0ZBILL 8YO ¥1/L0 HOVAT+" JTYNOY OZO¥
TS ZIT'L SLI43IN3E 33A0TdNI TVIOL WO 0161
TLOB8 S8N0YUd TS'ZIT') N ¥OOTE1-00006-T STZTOOOO TSEOOOO 190 6Z/LO 9860 84 NOL6I
~ZS'E08’Y TS €80y SYO0SS340¥d - VS IJvd J(._.o._. w0101

ZLO88 69¥DAVd -OL IEE‘T 8L IEE’'T N ¥O0i81-86886-0 100000S Z90 §Z/L0 f QIVNOY HOV3IT N

1L088 9YOAVd -9L°IEE'T oL IEE‘T N ¥O0191-88886-0 1000008 Z80 SI/L0 f QIVNOY ‘'HOV3T NOLO}
lvg 43 SININLINN0O dX3/A3d SIIVINI 1NNV e 434 03 3lva NOILdINDS3a 3003
Hive ANINAND 1394an9 135440 "3°p aNT mj
‘UON3 10 SE000 :-1d3

ovLiy¥Z-S ‘120

L 39vd LINNOV

GONGd A1 WVYDO0Id
L6 3IDVd 1l¥0d3IY

SE000 6Z = Ld30-NOISIAIOQ
88/6%/L0 ¥0Jd SNOILOVSNVYL 40 1¥0dIN 1 60mE
NILSAS SQN0OIY TVIONVNI I 6¥:LI:IT NMW INI
** ALISUYIAINN GUVMOH == 88/10/80 NMY ALV

()

R

APPENDIX 3

Publications

j{]

.

ADA SOFTWARE METRICS AND THEIR LIMITATIONS

Ronald J.

Leach

Howard University

ABSTRACT

A major goal of softwvare
engineering research is the
development of aetrics vhich measure
the complexity and sasintainability of
programs, with a smell portioa of this
effort directed specifically towvards
programs vwritten in Ada. This paper
will focus on tvo main themes. The
first theme vwill be the development of
metrics that specifically reflect the
complexity of prograss in Ada. The
second theme will be an investigation
of the theoretical limits of metrics
88 measures of progrsm complexity in
general.

1. INTRODUCTION

There has bdeen a considerable
smount of research activity directed
tovards the development of
measurements of coaplexity of programs
vwhich have high correlstion with
programming effort. See for example
references (1], [4], (5], [6], [7).
{81, (9], (11], [13]. Much of the
work may be broadly classified into
three categories, each related to a
model of programming complexity.

The first model assumes that the
prograaming complexity is the sum of
the programming comsplexities of the
various modules making up the .
program. A typical example of this
research [4] uses measures such as the
aumber of operators and operands,
nuaber of distinct operators and
operands, etc. No special use is made
of control structures; for example, a
GOTO statement is treated as having an
operator and operand. Another example
of this type is the cyclomatic measure
of McCabe [8]. Here the branchag and
flov of control is considered, with
the major concern being computation of

a number called the cyclomatic
complexity which is basically Euler's
formula applied to & graph which
represents the program. Kafuras and
Henry [5] call these metrics
microlevel.

The second model assumes that the
particular sodules coamprising a
progras are relatively straightforward
and that the major fsctors in prograam
complexity sre the interconnections
between these modules. A primary
example of this type of research is
[S] and the references indicated
there.)

The third model [3] assumes that a
primary factor in program complexity
is the experience of the prograamser
with other factors such as the goals
of program efficiency or storage
constraints having some effect on the
complexity.

Very few researchers consider more
than one of these models; Kearney, et al
[6] is an exception.

We note that much of the literature
on softwvare metrics is concerned with
the coding phase of softvare
development. Few articles explicitly
address the points made by Carrio (3],
Ramamoorthy [12]) and many others that
maintenance is a major portion of the
software life cycle. Carrio states that
many of the changes are caused by what
he calls "pseudo-maintenance” activities
which change the scope of the project by
adding features or changing requirement
specifications. Ramamoorthy describes a
sample of 282 programs with failures in
which 38,22 are caused by problems in
the requirements/specification level,

One of the claims made for Ada is
that it will reduce the total amount ¢~

_complexity of software in a particuis:

installation by encouraging reusable
code and to some degree by acting at
least in part as a program design
language. In the conclusion of this
paper we will make some observations
about these claims.

Joint Ada Conference 1987 288

o . le.

e

In this paper ve consider s variety
of softvare metrics which are applied
to over 30 programs vritten in the
language Ada. The paper is organized
as follovs. In section 2 we describde
the results obtained by applying
several metrics such as in [1],[4],
[5], [7), [8]. In section 3 we
consider the same dats using some nev
msetrics.

Sections & and 5 are concerned with
limitations of softvare metrics for Ada
programs. Section 4 introduces the
concept of a time-varying metric. Such

. metrics have the goal of meaauring that.

portion of a program most likely to
.change becsuse of s change in program
specifications. The metrics are also
evaluated on the ssme data set.
Relevance of such metrics and the
associated statistics to the software
life cycle is discussed.

Section S of the paper includes a
discussion of inherent complexity of
programs and the resulting limitations
of softwvare metrics.

Section 6 provides a summary of the
results obtained and some suggestions
for future work.

2. APPLICATION OF EXISTING METRICS

This paper has the twvin goals of
developing softwvare metrics for Ada
prograas* and describing the liamitations
of such metrics. 1In this section we
discuss the development of metrics.

When developing newv metrics, it is
instructive to examine the behavior of
some of the classical metrics on a set
of sample programs. The sasmple
programs wvere selected at random from a
variety of textbooks on Ada; they range
in length from 33 to 236 lines of
code. We emphasize that this is not a
formal experiment. Instead, ve
consider the examples given here as
providing experience in the collection
of data for the development of more
conplete metrica such as those
considered in the next section.

With these caveats in aind ve
present the data in Table 1 for these
prograas. We nge the notion of
operator and opwi.and as described in
(4]. The correlation between the
Halstead and McCabe metrics for these
programs is a low 0.139 explaining only
372 of the variance. A graphical view
of these metrics is given in figure 1
at the end of the paper vhere they ere
compared with a new Ada metric.

208 Joint Ada Conference 1987

Table 1

Program Halstead McCabe Lines

1 7611 s 33
2 5148 6 51
3 13485 " ss
4 215985 8 111
s 46189 8 115
6 42169 5 79
7 32733 4 42
8 73171 7 72
9 13537 14 91
10 35255 - 7 7%
11 19162 8 58
12 12832 2 45
13 5923 3 39
14 16476 5 67
15 47071 2 81
16 37405 s 50
17 2482 3 36
18 19826 s 68
19 2145 3 41
20 1572 3 65 -
21 3381 1 32 .
22 10806 3 39
23 160794 3 91
24 100991 12 92
25 47611 6 72
26 464781 7 66
27 14136 4 68
28 6441 4 48
29 64893 24 236
30 5159 3 50

3. ADA-SPECIFIC METRICS

In the previous section wve sav that
for a large collection of Ada prograsms,
there is low correlation between the
frequently used Halstead and McCabe
metrics., Clearly neither metric
completely measures software
complexity., Thus we need to examine
metrics providing "orthogonal" views of
a program. Such metrics will use some
of the ideas of the interconnection
ideas of (5] as well as [7].

We consider a collection of Ada
language features whose presence may
explain the wide variation betwveen the _!!
various metrics. These festures are
grouped by their perceived effects on
language level, programmers' specific
abilities, portability, and
verifiability. We consider only those
features that are specific to Ada and
not available in other languages such as
Pascal. The reason for this is that an -
Ada program written only using
Pascal-like features can have its
softvare quality measureed by obvious

. |

e

translations of Pascal setrics (assuming
that there are adequate metrics for
Pascal programs).

A. FEATURES DUE TO LANGUAGE LEVEL.
1. Neme Equivaslence

For example, the declarations

A,B: INTEGER;

C: INTEGER;

Type DATATYPE is nev INTEGER;

D: DATATYPE;

Type INT _TYPE is new INTEGER;
. E: INT_TYPE;
allov A,B, or C to be considered the
same type, but D is considered &
different type. This has no effect on
McCabe's metrics. There is no effect
on Halstead's if we consider only
executable statements and increase the
nuaber of lines of code by 4.

The variables A,B,and C are all
declared as being of type INTEGER.
Writing the declaration in this fors
require more source code text than does

A,B,C: INTEGER
Hovever if it is accompanied by a
comment explaining the significance of
the variable C, then the effect of this
longer form of the declaration is to
slightly increase readability of the
code snd hopefully to slightly reduce
prograam complexity.

The declaration of D as being a
distinet type (called a derived type in
Ada) allovs storage of D and allows
meny operations to be performed on D.
However, it does not allov operationg
such as the addition of a variable to
type INT_TYPE to a variable of type
DATATYPE. This actually reduces the
complexity of the program since it
precludes "accidental” errors such as
adding & Zip Code to a Sociasl Security
number and expecting a sensible result.

Note that this phenomenon does not
occur in a language with only
~"structure equivalence” of names. In
such languasges, addition of A and D is
8 legitimate operation.

2. Generics

Generic packages provide an
opportunity for data abstraction. As
such, they represent an opportunity for
the program -to represent an algorithm
more clearly. Thus the effect of
"generics” vill be to reduce the
complexity of the software during the
design and coding phase since among
other things they reduce the number of
subroutines and lines of code of the
prograa. Howvever, as wvas pointed out in
(1], generics form a teaplate whose

correctness in a particalar program is
difficult to test without exhaustive
consideration of all cases of
instantiations.

B. FEATURES WHICH INFLUENCE PROGRAMMER
UNDERSTANDING.

1. Tasking

The ability to specify operations
which need not be executed sequentially
is one fo the msjor festures of Ada.
The vriting and debugging of programs
involving tasks is complicated by the
fact that some errors will become known
only when certain orders of statement
execution sre followed and these
particular orders often occur long
after the testing phase.

Tasking is also one of the few
factors present in all phases of the
program life cycle froam specification
to maintenance. Therefore it must be
included in metrics which sre to be
applied at various times during the
life cycle. In addition, tasking used
to improve performance by splitting
execution of processes onto many
processors should probably change when
the nuaber of processors available in
any implementation of the software
increases. This facet of tasking
therefore will also affect the
portability of code somewvhere during
the life cycle.

Because of the complexity
introduced by tasking, we must treat
arrays of tasks separately from the way
we treat arrays of data objects.
Declaration of an array of data objects
does not change any measurement of
software based only on executable
statements. An array of tasks provides
far more opportunity for errors in
interconnection between two tasks than
do one or two tasks. Thus the number
of elements in an array of tasks has a
great affect on any reasonsble Ada
software metric.

An even worse situation is caused
by the Ada language allowing the
creation of pointers to tasks. Each
additional task ircreases software
complexity. However, the number of
tasks cannot be determined until after
execution of the ,rogram. We return to
this point later,

2. Subfeatures of tasking

Many of the problems occuring in
software which allows concurrency are
caused by synchronization of
processes, With this in mind we
observe that the reserved words
"select", "accept", "entry", "delay",

Joint Ada Conference 1987 287

I\ X

"abort™ in the context of tasks must
increase the complexity of the software
(and therefore any complexity metric).

3. Private declarations

Declarations using the work
"private" tend to reduce coamplexity ia
interconnection metrics since they
minimize the interface betwveen
components of the software. "Limited
private” declarstions further restrict
the interfece. The presence of such
declarations reduces complexity.

4, Mode restriction

Restricting the mode of parameters
to be "ia", "out”, or "in out" in
procedures and "in" only in functions
reduces side effects and thus reduces
coaplexity.

S. Exception handling.

The factors that cause exceptions
are present in every substantial
softvare project. Exception handling
facilities in Ada provide a clean way
of treating exceptions. The effect on
softvare metrics is to increase the
lines of code, operstors and operands
and thus increase complexity. However,
exception handling is probsbly the
siaplest vay to write certain segments
of code and thus the effect on a metric
should be relatively minor.

C. FEATURES WHICK INFLUENCE
PORTABILITY.

1. Packages

Packages encourage modularity which
is of vital importance in structured
design. Clearly a piece of software
can be ported to anmother installation
only, if all of the packages called by
the softvare are also ported and there
are no name conflicts with existing
packages in the new installation.

2. Generics

Generic packages encourage
portability by requiring only
instsatistion to work. However,
considerable care must be given to the
testing of generic packages, since each
instantiation of a package for a new
data type should be tested like a new
package.

288 Joint Ada Conterence 1987

3.Interfaces to other languages

Data abstraction and information
hiding are major features of Ada.
Clearly any software interface to
sanother language decreases the
usefulness of these features. Consider
the folloving example from the Ada
Reference Manual [10, p. 217):

package FORT-LIB is
function SQRT (X:FLOAT) retura FLOAT;
function EXP (X:FLOAT) return FLOAT;
private ’
pragms INTERFACE (FORTRAN, SQRT);
pragms INTERFACE (FORTRAN, EXP);
end FORT-LIB;

This use of the pragma INTERFACE
decreases portability because it uses
languages that may not be available in
all installations and becasue the
capability for interfaces to other
languages need not be made available in
all implementations of Ada [10, p.
217]. Clearly, this increases
complexity,.

4, Machine code insertions

Clearly machine code in an Ads
program eliminates portability of that
section of the program that inlcudes
the machine code. Some machine code

‘can be reorganized by the presence of

the pragea INLINE and the use of the
predefined library package MACHINE_
CODE. ,

Another source of machine dependent
code is he use of specific locations.
Examples of these are the for-use,
at-mod and use-at constructions.
Examples are:
for RIGHT_MASK use 2#001#

(using a bit pattern to mask input

for example)
FOR_FAILURE_SIGNAL use at 8#4041#
(using an octal representation
of a port) '

and

for PIXEL_STORAGE use
record at mod 4;
X at SOME_X_VALUE;
Y at SOME_Y_VALUE;
COLOR at SOME COLOR;
INTENSITY at SOME_LEVEL;
end record; ’
This last example might be used in a
graphics program in which we intend to
move a block of pixels and wish to
speed up their movement by aligning
with byte or word boundaries.

e

()

D. FEATURES WHICR INFLUENCE
VERIFIABILITY

1. Named parsmeter association

Consider a generic package
generic
X,Y: FLOAT: «0.0;
package POINT is ...
package FIRST_POINT is new POINT
(3.7,2.8);
psckage SECOND_POINT is newv POINT
(X => 3.7),
- Y =»> 2.6);
In the package SECOND_POINT, the named
paraseter association tells us about
the names of the parameters as wvell as
their values. The other package
describes the values by using
positional notation. Named parameter
association tends to decrease
complexity when used both in this
context and in the context of fields of
» a record,

2. Global variables.

Use of such variables often
increases complexity because the
availability of a shared variable to
tvo tasks means that neither can sssume
anything about the order in which the
operations of the various tasks are
performed except at synchronization
points, The syntax for shared
variables {s

pragma SHARED (var_name);

Shared variables increase complexity
since they increase opportunity for
errors.

4 . TIME VARYING METRICS

In the previous sections ve
discussed some standard metrics and the
results of their application to a large
set of Ada programs. The metrics used
all assign a complexity measure to
programs and to their component
modules, with the primary purpose being
the early identification of those
prograss or modules which are most
likely to require changes in the
development stage. We nowv consider the
behavior of metrics when they are
applied to programs during the entire
life cycle rather than restricting
attention to the development phase.
Note thsat any metric for Ada prograas
sust take into account the factors
mentioned in section 3.

Consider the standard model o7 the
softvare life cycle. The "maintennnce
phase™ is often caused by eith-r
porting code to another machine or by
changing specifications to reqmnir~.
faster execution, more efficien: nse of

storage, addition or delecton of
processors in a distributed system,
demand for a more "friendly" user
interface, etc. Changing performance
requirement specifications are even
more prevalent in a model in vhich
prototypes are developed rapidly with
successive modification of the
prototypes leading to deliverable
products. The evolution of Ada
softvare projects is greatly influenced
by factors peculiar to the Ada milieu.
These factors are: standardization of
the lsnguage before the advent of
usable compilers, rapidly evolving
compiler performance (although
compilation speed and quality of code
is still not at a very high level
compared to more mature langusges), and
lack of experienced Ada programmers
(because of the newvness of the
language).

It i{s clear that metrics used only
during the coding phase are only an
approximation to any quantitative
evalustion of the softvare that will
eventually be produced. A metric
applied only at one point in the life
cycle can only suggest portions of the
code that are especially complex. Such =
metrics are, by their nasture, incapable
of measuring those portions of the code
wvhich are inherently complex. Note
also that the goals of such metrics is
to aid in the development of code of
minimal complexity, regardless of the
changing requirements during the useful
life of the software project.

The nature of the time variation of
metrics is the theme of this section.
We intend to return to the topic of
evaluating and fine tuning such metrics .
in a future paper.

With these suggestions in mind wve
will use the following terminology.

MS =« the metric used at the

specification stage

MD = the metric used at the

design stage

MC = the metric used to evaluate
completed code (In the case of s
developing system with many prototypes,
the metric may be applied to each
prototype).

MM = the msetric used during the

maintenance cycle.

It is natursl to ask if the same
metric can be used at each one of these
four stages in the development of Ada
programs; the answver is a resounding
no! Among other things, Ada is not a
formal specification language since
specifications cannot be executed.

(Historical note - executable
specifications were considered in

Joint Ada Conterence 1967 289

774A________________*;_---.--u---l-lllll-.--.-...-....l

several of the interim reports on

Ada). Since most software ametrics
assume that language level is a major
factor in the metric, there cannot be a
suitable measure MS unless the
specification language is fixed. For
siaplicity, we assume that the
specification language is English and
that the metric MS is simply defined by

MS= number of tasks.
We are sssuming that the nuaber of
tasks is known and fixed at this
stage. Any dynamically allocated tasks
are assumed to be created because of
performance or coding criteria in later
stages of software development.

Thus the measure at this poiant is
basically an "interconnection metric”
since it is based on the nuamber of
separately executing components of the
program.

The next metric MD is more
interesting, because many people
consider Ada to be a reasonable design
language.

We assume that MD is a metric which
should accurately reflect the type of
‘code which will be vritten during the
coding phase. Thus MD and MC should
have high correlation. In this paper
we assume that NDsNC.

The metric MC used at the end of
the coding stage (or at the end of the
coding stage for each prototype)
reflects the standard use of metrics.
That is, MC is a static seasure of the
code. Its use here is tc analyze vhy
certain segments of the code wvere hard
to write and to predict and avoid
problems which will occur during the
maintenance stage. Our empirical
evidence (see the graph in Figure 1)
supports the metric MC defined by

MC = 2 *NUMBER_OF_TASKS +3 *NUMBER_
OF_EXCEPTIONS + 4 ‘(NUHBER OF_ENTRY +
NUMBER _OF_ACCEPT +NUMBER OF SELECT) +
NUMBER_| OF SHARED VARIABLES +
NUMBER_OF_PRIVATE_TYPES -

(NUHBER OF MODES_ TN + NUMBER_ OF
MODES IN OUT + NUMBER OF HODES OUT)/Z .

The final metric MM is easier to
understand. Since esch metric has the
dual goals of measuring the current
product and predicting problem in the
future, MM is concerned oaly with
problems in fixing errors, improving
performance, adding functionality, and
in the code being ported to other host
systems. The last three of these
reflect changes in the design
requirements of the software. At this
time we suggest the equation

290 Joint Ada Conterence 1967

MM = MC+NUMBER_OF_PACKAGES +
4 * NUMBER_OF TASKS +
5 * (NUHBER OF FOR_USE) +
3 = (NUHBER OF BINARY + NUMBER_OF_OCTAL
+ NUMBER.OF HEXIDECIMAL)
+ NUHBER OF_AT_MOD
for the metric MM.

Consider for example the problem of
porting softwvare which allows a maximums
of 5 independent tasks from a systes
with 1 processor to a systea with 10
processors. It is likely that such a
wvealth of resources will cause a sajor
change in the software if performance
improvements are not as expected.

5. LIMITATIONS OF ADA SOFTWARE METRICS

The following seems to be the
minimus requirement used for any
softvare metric.

Definition. A software metric =
for s language L is a function from the
set of programs or modules wvritten in
the language L to the non-negative real
numbers.

Note that this definition says
nothing about the input to & metric
being a correct prograa or module.
Note also that ametrics often have
additional properties. For exanmple,
Halstead's metric [4) has the property
of additivity; chat is, if A and B are
disjoint modules, then

a(A+B) = m(A) + wu(B),
and this is independent of how A and B
are interconnected. Here "A+B" means
the joining of A and B in & single
program.

The cyclomatic number e-n+p defined
by McCabe [8] requires a slightly
different analysis. [f we assume that
the start mode of B is identified with
a8 node of A and that no other nodes or
edges are common, then the number of
nodes of A+B is one less than the sua
of the number of nodes of A and the
number of nodes of B. Using an obvious
notation,

n(A+B) = a(A) +n(B) =1,
Also, the number of connected
components of A,B, and A+B are related
by

p(a+B) = p(A) + p(B) -1
and hence ve have

a(A+B) = a(A) +a(B).
It is easy to see that this is true
even if A and B have other nodes or
edges in common or if A and B have no
nodes in common. In any event,
McCabe's cyclomatic number satisfies
the additivity condition

.

a(A+B) = m(A) + m(B).

What about interconnection
metrics? Such metrics assume that the
primary factor influencing complexity
is the interconnections betwveen
modules. The number of interconanections
increases exponentially as the number
of modules increases. Hence the
additivity condition is replaced by the
condition

a(A+B)> u(A) + a(B)
vhere "A+B"” nowv represents a progras
vith modules A and B (which of course
msy also bde composed of other
modules). Thus these metrics fail to
have the property of "subadditivity",
such less additivity. This is a major
reason for the lack of a well-defined
theory of such metrics for general use
in evaluating softwvare written in most
prograaming languages.

The situation for Ada softwvare
metrics is somevhat different from the
situation for general programming
language metrics. As vas indicated in
section 3, the interfaces betveen
component modules are tightly
controlled by the standard interfaces,
such as restricting modes in functions
to "in", "out", or "in out". For
separste packages, there are no common
variables unless the common variables
are declared by the pragme SHARE in
each package. Thus Ads metrics wvhen
applied to structured code have the
additivity property that the measure of
a program composed of two separate
program units is equal to the sum of
the measures of the tvo program units.
Hence it is ressonable to suspect that
there is some mathematical structure
underlying the theory of Ada software
metrics of the type presented here.

It is important to distinguish the
factors that are to be measured by a
metric., Such factors include the
language level, underlying complexity
of the problem, experience and ability
of the programmer, relative frequency
of expected errors in certain code
segments, and degree of difficulty in
implementing the changes in the next
phase of the softvare life cycle.
Metrics are applied to code for the
purpose of evaluating the code and
predicting those portions which will be
troublesome in the next phase of the
life cycle.

With these points in mind, we make
the following definition. We define an
Ada softwvare metric scheme to be a
quadruple (ms, md, mc, mm) of functions
called metrics whose range is a subset
of the set of real numbers and which
satisfy the following conditions:

a. The domain of ms is the set of
all possible specification language
(which may be English, formal
specificaiton language with executable
code, or something in between).

b. The domains of md, ac and am
are the set of all possible Ada
programs (assuming Ada is the design
language).

c. Each of the metrics md, mc, and
ms is the sum of tvo non-negstive
functions. These functions are the
P-messures vhich represent the asetric
applied only to those portions of the
code that are direct translations of
Pascal programs end the A-functions
vhich represent the coamplexity -of the
code caused by Ada-specific features
not present in the language Pascal.

Defining a metric scheme as &
collection of four metrics seenms
somevhat redundant at first glance.
Much of the research in software
metrics involves a search for s single
messurement to be used at sll times.
Hovever, Dunsmore and Gannon (3]
performed an interesting experiment in
the use of global variables and formal
parameters in cosmunicating between
varfous modules. They observed that
global variables tend to decrease
errors during program development but
that formal paraseters tend to decrease
errors during the maintenance phase.
Their results support the need for
different metrics during different
phases of the life cjcle.

Recall that in section 3 we
observed that any metric for Ads
prograas must consider the typing,
tasking, packages, modes, generics,
exceptions and other special features
of Ada. Clearly these must be present
in the A-function since they are not
available in the language Pascal. Ve
are nov ready to state and prove the
ma jor result which shows the-limitation
of Ada software metrics.

THEOREM It is impossible for any
metric m applied to any stage of the
software life cycle of Ada programs to
be able to predict the complexity of
the code. In fact, given any Ade
softwvare metric scheme, there is a
program E for which each of the metrics
in the scheme hes a fixed value when
applied to the code but the measures
applied to E during execution can grow
arbitrarily large.

Joint Ada Conference 1987 291

.

Proof. Consider a program E which
involves code of the fora
task type T_TYPE is

me e e s 0 s

type TASK_POINTER is access T_TYPE;

Any metric applied to the program E
at any stage in the softwvare life cycle
will assign a fixed non-negative number
to BE. However, tasks can be spawned
dynamically at run-timse. The nusber of
tasks, and hence the number of
interconnections between tasks, can be
made arbitrarily large at run time.

Hence any complexity messure, when
applied to the code-dats pair during
runtime, can be made arbitrsrily large
even though the value of the messure on
E before run time was fixed.

This theorem shows that it is
impossible for any metrics wvhich can be
applied to every program st any stage
of the life cycle to be able to
precisely predict problems in
complexity of the code. There are
several possible options to partially
resolve this situation.

1. Continue to apply these metrics
(or later, more polished ‘versions) to
Ads programs recognizing that these
metrics cannot give coaplete
information on all Ads prograas.

2. Apply these metrics oanly to s
subset of all possible Ada prograss.
This procedure is analogous to the
situation in the branch of mathematics
called measure theory wvhere measures
are not applied to all sets.

3. Partition the metrics ms, nud,
mc and mm into a collection of

“functions, not all of which can be
applied to all programs. These
functions will incorporate the ideas in
section 3.

6. CONCLUSIONS AND DISCUSSION OF
FURTHER RESEARCH

This paper had two main themes:
development of software metrics for Ada
programs and determining the
limitations of such metrics. Research
on the development of metrics involved
exsmination of several classical
metrics on a sample of short Ada
programs. Results obtained suggested
some metrics for Ada programs that are
incorporated into Ada metric schemes.
These metric schemes are quadruples of
metrics (md, md, mc, mm) which are
applied during the specification,
design, coding, and maintenance phases
of the life cycle. Reseach will

292 Joint Ada Conterence 1987

continue into such metric schemes and
their validity as predictors of
problems with programs st various
points in the software life cycle.

The second main theme of this paper
was the theoretical limitations of such
aetrics. VWe proved a theores
indicating that no metric applied to
static code can predict code complexity
for prograss vwhich change their
complexity at runtime. The proof of
the thorem is based on a particular Ada
concept. Future research in this ares
will concentrate on extending this
theorem to determine which other
properties of Ada prograas cause
similar difficulcties with Ades metrics.

Representing metrics as the sum of
P-metrics (for Pascal-like program
features) and A-metrics (for progras
features available in Ada but not in
Pascal-like langusges) is a first step
in this research.

Acknovledgement

This research wvas partially supported
by the Army Research Office under grant
number DAAL~03-86-G-0085.

REFERENCES

1. Basili, V. and Wu, L., "Structure
Coverage Tools for Ada Software
Systems", to appear in Proceedings of
the 1986 Joint Conference of the
National Conference on Ada Technology
and Washington Ada Symposium.

2. Carrio, M., "The Technology Life
Cycle and Ada", Proceedings 4th Annual
National Confercnce on Ads Technology,”
;;rgg 19-20, 1986, Atlanta, GA.,

3. Dunsmore, H.E., and Gannon, J.D.,
"Anslysis of the Effect of Programming
Factors on Programeing Effort™, J.
Syst. Software 1,2 (Febd. 1980),
141-153.

4, Halstead, M.H., "Elements of
Software Science", Elsevier
North-Holland, New York, 19/7.

S. Kafura, P. and S. Henry, "Software
Quality Metrics Based on
Interconnectivity”, J. Systeas and
Software, 2 (1981), 121-131.

e

6, - Kearney, J.K., Sedlmeyer, R.L.,
Thompson, W.B., Adler, M.A. and M. A,
Gray, "Problems with Software
Complexity Measurement”, Proc 1985 ACM
Computer Science Conference, March
1985, Cincinnaci, Ohio, 340-347,

7. Keller, S.E. and J.A. Perkins, "An
Ada Measurement and Analysis Tool",
Proc. 3rd Annual National Conference on
Ada Technology, March 1985, Houston,
Texas, 188-196.

8. McCabe, T.J., "A Complexity
Measure", IEEE Trans. Software
Engineering, SE-2, 1976, 308-320.

9., Perkins, J.A., Lease, D.M. and S.E.
Keller, "Experience Collecting and
Analyzing Automatable Software Quality
Metrics for Ada", Proc 4th Annual
National Conference on Ada Technology,
March 1986, Atlanta, GA, 67-74,

10. "Reference Manual for the Ads
Programming Language”,
ANSI/MIL-STD-1815A", U.S. Dept. of
Defensee, 1983,

11. .Reynolds, R.G. and D. Roberts,
"PARTIAL: A Tool to Support the Metrics
Driven Design of Ada Programs™, Proc
15¢th ACM Comp Scisnce Conference, Febd,
1986, 213-219.

12. Ramamocorthy, C.V., "Languages for
Software Engineering”, keynote address
at IEEE 1986 International Conference
on Computer Languages, Miami, Fla.,
October 28-30, 1986.

13. Taylor, R.N. and T.A. Standish,
"Steps to an Advanced Ada_Programming
Eavironment', IEEE Trans. Softw. Eng.
SE-11, 3(1985), 302-310.

BINRRAPHICAL SKETCH

Ronald J. Leach is a Professor of Systems and
Computer Science at Howard lUniversity. He has 8BS,
MS,and Ph). degrees from the University of Maryland
in Mathematics and a MS degree from Johns Honkins
University in Computer Science. His current
research interests include software enaineering,
analysis of algorithms, computer granhics and user
interfaces.

. HALsSTeAD
MccA /]
NEW METRIC e

FIGORE 1

Joint Ada Contference 1987 293 -

JHIDDEESINRSRORSSS

-

FORMAL CONCURRENT TASKING PARADIGMS IN THE DESIGN OF ADA PROGRAMS

Ronald J. Leach
Darlene Bond

Department of Systems & Computer Science
School of Engineering
Howard University
Washington, D.C. 20059

ABSTRACT

A major feature in the design of Ada was
the high level support of concurrent tasks. Con-
current tasking is an essential feature of embed-
ded systems in most environments. In this
paper we examine the state of Ada education in
the support of concurrent tasking. The tasking
examples are compared to formal models in
C.A.R. Hoare’s CSP (Communicating Sequential
Processes) system. The resulting information is
compared with actual use of tasking programs in
the Ada literature and in industry and govem-
ment. Particular attention is paid to the treat-
ment of non-determinism in tasking programs
and in formal models. :

INTRODUCTION

In order to maximize the effectiveness and
efficiency of a program, a programmer must
begin the program development with a good
program design structure. Programs are made
up of several types of building blocks. Pro-
grams without concurrent execution of tasks use
the standard sequential building blocks of pro-
cedures, functions, and modules. Programs
involving concurrent execution use these build-
ing blocks and the additional block of a task
which is usually a collection of the sequential
building blocks. The use of concurrent tasking
in programs greatly increases the potential for
error in programs and thus causes great
difficulty during all phases of the software life
cycle. Emors which occur at many phases of
the software life cycle and costs which increase
exponentially are major features of the
"software crisis". It is clear that the current
"software crisis" will get even worse since most
of the existing problems have been with systems
which do not involve much concurrent execu-
tion.

Abstraction and information hiding are
major techniques of software engineering that
are used to address some of the problems with
software. Indeed, the relative ease in which
information hiding and abstraction of data are
implemented in the Ada language is a major
reason for the success of Ada. It is clear from
the success of these language features that there
is a need for formalism in the area of concurrent
programming in Ada.

Perhaps the most common paradigm for
design of programs involving concurrent tasks is
C. A. R. Hoare's Communicating Sequential
Processes (CSP). It is reasonable t ask if
Hoare's abstract models of CSP involving con-
currency are applicable and effective tools in
program design. Ada was originally intended
for use with embedded systems and concurrent
tasking and to incorporate principles of good
software engineering; it is appropriate at this
point to examine how these two ideas work
together in practice. This research was con-
ducted to see if the current state of use of
abstract models of Ada programs involving con-
current tasking is sufficiently well-understood to
be used in providing a basis for Ada program
design. Thus this research represents an assess-

ment of how well the use of tasking and formal |

models is supported in the existing Ada educa-
tional community.

The first step in approaching this problem
was to collect data. The data was initially col-
lected from the published literature of Ada pro-
grams including textbooks, lecture notes, and
conference proceedings. We chose 17 texts
from the library; the selection criterion was
actually having the book on the shelf and not in
circulation at the time that the data was gath-
ered. We feel that this is a representative sam-
ple of the use of tasking in the existing Ada
textbook literature. Programs which involved
tasking were extracted and examined to see

ered. We feel that this is a representative sam-
ple of the use of tasking in the existing Ada
textbook literature. Programs which involved
tasking were extracted and examined to see
which, if any, of Hoare's models could be
applied to the programmers’ method of execut-
ing the task or tasks. The results were tabulated
to see which models were applied in these pro-
grams.

The textbooks examined fall into two
categories: limited amounts of tasking (includ-
ing none at all) and considerable emphasis. A
total of 819 programs from all textbooks were
examined, with only 114 or 13.9% having any
concurrent tasks, We note that most of the pro-
grams involving tasking (36) were found in a
single reference [7). Of the programming sam-
ples obtained from textbooks in the first
category, there were only 32 programs involving
tasking out of a total of 730 or 4.3%. The PIQ
model of concurrent execution of tasks with no
communication between the tasks was found
most ofien, with a total of 14 instances, of
which 12 involved only two tasks. The repeti-
tion of tasks, which is denoted abstractly as *P,
was the next most frequently found, with seven
instances. The next most frequeat model occur-
ring is the P;Q model in which the tasks actu-
ally are executed in order, a total of 6 instances.
Hoare distinguishes 29 distinct models for task-
ing involving two tasks; only 8 of them or
27.5% are represented in the texts. In table 1
below, we summarize our search of the the text-
book literature, some examples of student pro-
grams, and sample programs that are available
in the non-textbook Ada literature. Note that
we show the number of tasks in each example
and therefore do not quite agree with all of
Hoare’s categories, since Hoare only lists the
possibilities for the execution of two concurrent
tasks in his explicit listing of possibilities.

The textbooks [5] and [7] had much more
emphasis on concurrent programming as the
titles "Concurrent Programming in Ada" and
"Parallel Programming in ANSI Standard Ada"
would indicate. There were a total of 89 pro-
grams presented with tasking evident in 42 or
51.7%. Here the range of programs is much
wider including examples of (PlIQ)*, $$(P sub 1
IP sub 2 .IIP sub n)* $$, PIQ with Q of the
form RIIS;T and several other models.

The next set of data was obtained from
student programs. The intention here was to
measure the level in which tasking is used in

such programs. A preliminary experiment
involving the examination of 12 student pro-
grams using concurrency indicated that the
sequential execution of tasks predominated, with
8 uses of the P;Q model of sequential non-
communicating tasks, 2 with parallel execution
of non-communicating tasks (PllQ), one with the
(*(*(*P:Q))) model of repeated sequential tasks,
and one with the P;*Q model of task followed
by repetition of a sequential task. Some of the
programs obtained from students followed the
P;Q model which describes the execution of two
processes or tasks which are executed sequen-
tially. Some observations about the difficulties
encountered by students in the development and
execution of these programs was made in [14).

An additional data set was obtained from
the existing published non-textbook literature.
This data was obtained from the newsletter
Adal etters (including its predecessor), proceed-
ings of several Ada conferences, the Journal of
Pascal, Ada, and Modula-2, materials from a
variety of Ada short courses, and the Ada Repo-
sitory. Again in this case, few of the sample
programs supported the more complex models.

The most common example of Ada task-
ing programs was the consumer-producer prob-
lem which was presented in various forms.
Many texts, especially (7], gave several different
solutions to this problem. In some instances,
there were two relatively different coding solu-
tions to the same abstract model, even though
the two models appeared to have the same CSP
representation. We intend to pursue this subject
in future work.

The remaining data was collected from a
small set of programs actually used in industry
and government. Some of these programs make
claborate and extensive use of tasking while of
course others do not. The data collected is
incomplete at this point because of the difficulty
in obtaining samples of actual proprietary code.
We do not expect that this data will ever be
complete or that it will represent the precise
percentages of use of Ada tasking in Ada pro-
grams. Instead, we consider it as an example of
how Ada tasking paradigms are used in a few
hopefully representative Ada applications.

-3

-

TABLE 1: READILY AVAILABLE INFORMATION ON TASKING. NOTE THAT SOME OF
THE DATA COULD ALSO BE CONSIDERED AS MORE COMPLICATED CSP MODELS

CSP MODEL

NUMBER OF OCCURRENCES

BOOKS

BOOKS WITH TASKING

STUDENT PROGRAMS | LITERATURE

PIQ 12

18

2 8

PO Q

*P

[SARS R

P.Q

b*P

PR

x:A->P(x)

A->P

*PQ

PIQIR

P.Q:R

P/QIR

POQOR

PIQIRIIS

bt] L et [t P [N |t [t | et | e

P*Q

(P:Q*)%)*

PIQIR)*

PIQ)*

Pl ..Pn

(P1 .. Pn)*

(Q//pP1) Q/Pn))*

Y Ll 1 B FIRY JSY

TIMED TASKS

SUMMARY AND CONCLUSION

It is clear that the quality of information
available to beginning and intermediate Ada
programmers and designers about tasking is
quite limited and does not address the full range
of potential tasking uses. The actual problem is
much worse than this because Hoare's CSP
models do not allow for time constraints such as
delays and fixed waits. Such factors are criti-
cally important in situations such as the FAA
control system or indeed in any system that
must perform in real time.

It is well-known that even experienced
programmers have considerable difficulty in
writing programs which involve any degree of
concurrency. We recommend the following
solutions.

1. At the preliminary level of education;
that is, in the undergraduate and graduate
programs of colleges and universities, the
amount of instruction in concurrent pro-

gramming must be increased. This
instruction should be done over a variety
of courses so that students see these ideas
in a number of contexts.

2. Textbooks in the language Ada must
include a wider variety of tasking pro-
grams including more of Hoare's CSP
models. While the amount of tasking
information need not be as much as in [7],
it must be increased in order to make
sophisticated knowledge of Ada tasking
available to as many students as possible.

3. Continuing education for the profes-
sional should include a comprehensive
study of tasking in Ada. This is not
appropriate for the first introduction,
which should be limited to the fundamen-
tal features of the language and Ada
software engineering with only a brief
introduction to tasking. Second courses
should give views of many abstract
models of tasking by means of many

diffcrent examples. We note that this is
being done at Pennsylvania State Univer-
sity (Capitol Campus) and at Computer
Science Corporation (Moorestown).

4. In the absence of high quality educa-
tional opportunities or having existing per-
sonnel already well trained in Ada task-
ing, management must choose between
using special expertise from outside the
organization and restricting the tasking to
the simple models supported by most of
the existing texts.

Acknowledgement

Research of both of the authors of this
paper was partially supported by the U.S. Army
Research Office under grant number DAAL-03-
86-G-008s.

REFERENCES

1. Amoroso, S. and G. Ingargiola, Ada : An
Introduction to Program Design and Coding,
Pittman , Boston, 1985.

2. Ausnit, C. et al, Ada in Practice, Springer-
Verlag, New York, 198S.

3. Booch, G., Software Engineering with Ada,
Benjamin Cummings, Menlo Park, California,
1983,

4. Buhr, RJ.A., System Design with Ada,
Prentice-Hall, Englewood Cliffs, 1984,

5. Bums, A. Concurrent Programming in Ada,
Cambridge University Press, Cambridge, Eng-
land, 198S.

6. Caverly, P. and P. Goldstein, /ntroduction to

Ada: a Top-down Approach for Programmers,
Brooks/Cole, Monterrey, California, 1986.

7. Cherry, G., Parallel Programming in ANSI
Standard Ada, Resion Publishing Co., Reston,
Va, 1984.

8. Cohen, N., Ada as a Second Language,
McGraw-Hill, New York, 1986.

9. Downes, V.A. and SJ. Goldsack, Program-
ming Embedded Systems with Ada, Prentice-
Hall, London, 1982,

10. Gehani, N., Unix Ada Programming,
Prentice-Hall, Englewood Cliffs, New Jersey,
1983.

11. Haberman, ANN. and DE. Perry, Ada for
Experienced Programmers, Addison-Wesley,
Reading, Massachusetts, 1983,

12. C.AR. Hoare, Communicating Sequential
Processes, Prentice-Hall, 1985,

13. Katzan, H.Jr., Invitation to Ada, Peurocelli
Books, New York, 1984.

14. Leach, R., Experiences Teaching Con-
currency in Ada, AdaLetters, 1987.

15. Mohnkem, G.L. and B. Mohnkem, Applied
Ada, Tab Professional and Reference Books,
Blue Ridge Summit, Pennsylvania, 1986.

16. Pyle, 1.C., The Ada Programming Language,
Prentice-Hall, Englewood Cliffs, New Jersey,
1981.

17. Texel, P.P., Introductory Ada: Packages for
Programming, Wadsworth, Belmont, California,
1986.

18. Wegner, P., Programming with Ada: An
Introduction by Means of Graduated Examples,
Prentice-Hall, Englewood Cliffs, New Jersey,
1986.

19. Adaletters, various issues 1983-1987.

20. Joumnal of Pascal, Ada, and Modula-2, vari-
ous issues 1986-1987.

21. Proceedings of the First Annual National
Conference on Adc Technology

22. Proceedings of the Second Annual National
Conference on Ada Technology

23. Proceedings of the Third Annual National
Conference on Ada Technology

24, Proceedings of the Fourth Annual National
Conference on Ada Technology, Atlanta, GA,
March 19-20, 1986.

25. Proceedings of the Joint Ada Conference,
Washington, DC , March 16-19,1987.

Darlene Bond received a Bachelor of Science
degree in Psychology from Howard University
in 1983. She is a graduate research assistant in
the School of Engineering's Systems and Com-
puter Science Department at Howard and will
receive a M.S. in Computer Science in May,
1988. Her professional interests include systems
programming, computer graphics, software
engineering, and artificial intelligence.

Ronald J. Leach is a Professor in the Depart-
ment of Systems and Computer Science at
Howard University. His research interests

include software engineering, computer graphics
and concurrent computing.

The Actual Complexity of Parallel Evaluation of low Degree

Polynomials

Ronald J. Leach
O. Michael Atogi

Razeyah R. Stephen

Department of Systems & Computer Science
School of Engineering
Howard University

Washington, D.C. 20059

ABSTRACT

We consider several sequential and parallel algorithms for the evaluation of
polynomials of low degree, with particular emphasis on those that are used frequently
in computer graphics. A complete accounting of computation times for the speed-up
and efficiency of these algorithms is reported. The results are compared to standard
e-timates of these quantities for single and multi-processors using classical complexity
ti..ory. A simulator which is configurable to several parallel architectures is used to
provide validation of the results obtained.

1. INTRODUCTION

It has been clear for several years that major improvements in execution time for many programs
will require extensive use of parallel processing. Many papers have been written exploring the compu-
tational complexity of algorithms which are developed for parallel computation. The complexity is usu-
ally measured on some abstract machine which has certain properties that are assumed to be somewhat
realistic. In general, these theoretical results do not have a particularly good correlation with observed
execution times on actual hardware realizations of these abstract parallel machines. The paper (4] is a
typical example. Typically the quality of a parallel algorithm is measured by two quantities called the

efficiency and the speed-up. Speed-up is defined by the formula

m

-2-
S@)=TAVT ()
while efficiency is defined by
EQ)=S@)p.

where p denotes the number of processors. These measures are well-defined for any given algorithm
provided that all of the times involved in the computation are taken into account. Typically, the "best"
sequential algorithm is used to compute T(1). The articles [2], [S], and [9] present various views of

what the actual speed-up of an algorithm is. In [9], Parkinson claimed that a particular parallel algo-

rithm for adding two vectors has efficiency greater than 1. This analysis was disputed by [2] and [5],
where the authors indicated that certain implicit assumptions were made by Parkinson. They described
other factors involving actual performance on any hardware realization of an abstractly described paral-

lel computer.

The controversy over this simple algorithm suggests that some of the classical results of arith-
metic complexity theory be reviewed from the point of view of the actual times needed for performance
of needed operations in an arithmetic computation. In this paper we are concemed with the evaluation
of polynomials, We will consider a number of algorithms for evaluation of low degree polynomials and
obtain estimates of run time speed using techniques of classical arithmetic complexity theory. The
actual numbers of memory accesses, register moves, index changes, arithmetic operations , and inter-
process communications will be given and will be translated to actual efficiency and speed-up for a

number of parallel architectures.

We restrict our attention to low degree polynomials in this paper for several reasons. First, the
actual time costs of all of the operations are apparent in low degree polynomial evaluation. Second, our

intention was to compare actual to theoretical results. It is easy to do this for low degree polynomials.

Finally, real-time graphics, which is one of the most computationally intensive fields and is a typical
target for parallel computation, is concerned almost exclusively with the evaluation of cubic polynomi-

als or quotients of cubic polynomials when solid objects are displayed. For additional information, see

.

the reference [3] from which the following discussion of the use of low degree polynomials in computer

graphics is taken.

-3-

Low degree polynomials appear naturally in computer graphics in the following context. Suppose
that the graph of some surface is to be displayed. The surface is approximated by a collection of
patches which are defined by a collection of quadruples of points. These quadruples may represent
points on the surfaces or some combination of points on the surface or points of tangency, or points that
are chosen to represent the smoothness of the surface without lying precisely on the surface. The patch
is given in parametric form x = x(u,v),y = y(u,v), z = 2(u,v), where u and v are restricted to lie in
some region which is almost always the unit square 0 € u ,v <1, The functions x(x,v), y(&,v), and
z(u,v) are either products of polynomials of degree at most 3 or are quotients of such products. The
reason for this is technical and involves having exactly the minimum number of degrees of freedom to

allow for smoothness when two patches are joined.
The graph of the surface is approximated near the patch by the following algorithm.

FOR each patch DO
/* evaluate the patch for curves of constant u */
for (u =0; u < 1; u = u + increment)
move_abs_3(x (1 ,0), y (1.,0), z(x,0));
for (v = increment,v < 1,v = v + increment)
line_abs_3(x(u,v), y(u.v), z(uv));

/* evaluate the patch for curves of constant v */
for(v=0;v £1;v =v + increment)
move_abs_3(x(0,v), y(0O.v), z(0.v));

for (u = increment, u <1, u = u + increment)
line_abs_3(x(uv), y(uv), z(uv));

Each patch requires 2(increment)2 evaluations of the functions x (& v), y(u,v), z(u,v) for a total
of 6(increment)~ evaluations of functions. A typical realistic picture in computer graphics may contain
between 500 and 2000 or more patches and may require values of increment of .001. This corresponds
to 1.2* 10" possible function evaluations of the three component functions x, y , and z. Clearly a crit-
ical factor is the speed in which the functions can be evaluated. More importantly, the large number of
computations needed to solve this problem strongly suggests a need for some of the computations to be

performed in paralle! .

2. SOME STANDARD RESULTS FROM COMPLEXITY THEORY

We recall a few results from classical arithmetic complexity. Let n be a positive integer and con-
sider the polynomial
p(x)=ag+a;x +..a,x" .
Suppose that we wish to evaluate this polynomial on a single processor. To evaluate p(x) for a given x
requires the computation of x™ and all lower powers of x. The most obvious algorithm requires 2n - 1
multiplications and n additions. A faster procedure is Horner's method where we write

P(X) = ("'((anx +au-l)x + al—?)x"') +ay.
This requires n multiplications and n additions. Knuth [6] gives an algorithm due to Belaga which

requires I%J + 2 multiplications and n additions. See [7] and [10] for other results in this area.

For parallel evaluation of polynomials, some major results are due to [7] , [8), and [10]. These
results suffer from some of the same difficulties as the previously mentioned work on the efficiency and

speed-up. See the paper [1) for an analysis of some of the difficulties involved.

3. PARALLEL ALGORITHMS USED FOR POLYNOMIALS IN A SINGLE VARIABLE

In this section, we describe algorithms (both sequential and parallel) for evaluation of low degree
polynomials in one variable. In order to conserve space, we have omitted each case of Homner's algo-
rithm for single processors and have followed the notational conventions of using the terminology of
the original papers with "pre-processing” and not explicitly writing obvious communications between
processors.

A2.2: (Homer's method, quadratic polynomial, two processors)

PROCESSOR 1 PROCESSOR 2
ax ax

ax? a,x +do
axi+ax +ag

for second degree polynomials,

A3.1a: (Knuth’s method, cubic polynomial, single processor)
y=x+c¢
w=y?
Ya=w-Q
z =a,y
z=2+P,
zy2

A3.2: (Homer’s method, cubic polynomial, two processors)

PROCESSOR 1 PROCESSOR 2
2 2
x x
ax? aqx2
ax?+a, asx? + a;
(asx® + ayx
ax?+agHax? +a)x

A3.2a: (Knuth’s method, cubic polynomial, two processors)
PROCESSOR 1 PROCESSOR 2 -

y=x+c y=x+¢
y? ay

yi-o z=azy +By
2(y? - oy)

for third degree polynomials and

Ad4.1a: (Knuth’s method, quartic polynomial, single processor)
y=x+c¢
w=y?
w -
ayy
ay + 0o
(ayy + o)y
z =(aqy + gy +Bo

2w - ay) QH

A4.2: (Homer’s method, quartic polynomial, two processors)

PROCESSOR 1 PROCESSOR 2
2 2
b 4 b 4
ax? ayx?
ax’+a, ax?+ay
(ax? + ax? (@3x? + u)x

(@x%+a)x?+a,
@2 +a)x*+ag+ (ax®+a)x

Ad4.2a: (Knuth’s method, quartic polynomial, two processors)
PROCESSOR 1 PROCESSOR 2

x +0 X+ 0y

z = (x+0g)x delay

ysz+q delay
x+aq+y
(x+ap+y)y

(x+o+y)y+o;
(G+y+ar)y + 0a)0y

and
A4.2b: (Knuth’s method with modifications, quartic polynomial, two processors)
PROCESSOR 1 PROCESSOR 2
y=x+c¢ y=x+c¢
y? 8y
y oy ay + 0o
delay (60 + agy
z =(agy + 0y +Bo
20 - ay)
for fourth degree polynomials.

These algorithms were implemented on a variety of distributed systems with processing elements

of several different architectures . The results are given in the next section.

In each case, the processors used in the distributed system were identical. The experiment was
repeated for each algorithm so that some independence of processors was obtained. Assembly code was
not optimized by any unusual tricks but was given with the intention of imitating typical code generated
by a compiler. Thus the results should be typical of the situation actually encountered in practice, espe-

cially since the general problem of efficiently using registers for computation on an arbitrary computer

is extremely difficult.

Suppose we define a processing element as a triple (CPU, memory, single data channel-in, single
data channel-out). The results of this paper are described in the following theorem. We will need to
use the following notation:

g = time for addition/subtraction,

Lua; = time for multiplication/division,

lindex = time for array index access,
Lwem = time for memory access,
tiop = time for loop control

L. = time for communication between two adjacent processors.
Theorem 1 : Let F be an arbitrary polynomial of degree 2, 3, or 4 in a single real variable u. Suppose
also that F has real coefficients. Let E(p,n) and S(p,n) be the efficiency and speed-up for the problem
of evaluating F(u) at a real variable u on a p-processor non-pipelined system for a polynomial of

degree n. Then

S(Q2.2) S Uosd + Upuats + Stpem + 2indes) | (lodd + 2mtt + 3limem + lindes + tcomm)
EQ2)=5220n

S52.3) S (Btadd + Stutt + Ttmem + Stindex V(2add + Stuoit + Ymum + 2lindex + Loomm)

S(2.3) S (Btads + tmutr + Mmem + tindex V(2ads + 2pads + Stem + 2lindax + Loomm)
EQ23)=523)2

S(24) S (Woay + Myt + Ve + Mindex V3ladd + Stmuds + Olmem + 2lindex + Lcomm)
EQ4)=8242

Proof.

Algorithms A2.1, A3.1, and A4.1 represent Homner’s method on one processor. Note also that we
can reduce the number of index accesses by one if we note that aq is typically in the first memory cell
devoted to the array of coefficients. We have the following table which describes the total time needed

for evaluation of the polynomial F.

ALGORITHM
A2l
A22
A3l
A3.l1a
A32
A32a
Ad.l
Ad.la
Ad42
Ad.2a

A42b

TOTAL TIME

Uoid + puts + Stpem + Lingex
ladd + 2Upgtt + lmem + lindex + Loomm
Yodd + s + Toem + Slindes

Yosd + Sttt + Tmem + Iindex

ead + 3l + Hpem '+ Uinder + loomm
pdd + s + Stpem + 2index + Loomm
Qlosy + Yty + M + Hingex

Aloig + Yoty + Vpem + Minger

odd + st + Olpmem + 2index + Loomem
Alegg + gt + Npem + Mindex + Loomm

3add + touts + Blmem + Lindex + lcomm

Examination of the table completes the proof of the theorem.

J

Remarks:

1. These bounds on the efficiency and speed-up are not increased if we allow each of the proces-
sors 10 have registers with faster access time than normal memory access.

2. The performance algorithms can be speeded up if we feed in data via a pipeline. This situation
was not described by the theorem since it violates the single data channel-in and single data
channel-out requirement. In particular, our results do not apply to algorithms such as
deCastlejau’s method pictured below for computing cubics. Note that the cubics produced are not

in standard form.

T
s
1- z
n1 N
1-x z 1-x H
(] ns ne
i- 4 1- z 1~ 4
14] rni ra K

In deCastlejau’s method, the values of P, P,, P,, and P, are given to the processing elements in
the bottom row. These values are multiplied by x and sent to the processor pictured above at the
same time that they are multiplied by 1 - x and sent to the processor at right. This simultaneity L |
is due to the pipelined architecture and the special design of the processing elements. Inthenét

step, this is repeated in the next row of processing elements P,, Ps, P At the same time, the

processors in the bottom row are sent new values of x to continue the process. A similar thing ﬁ
happens when data flows up from the first row to the second row and from the second row to the

top row, Let us ignore the time 1., for indexing the four values that are given to the processing

-10 -

elements in the bottom row. The steady state speed-up and efficiency of this algorithm are each
much greater than that of the obvious sequential analog because of the tremendous decrease in

memory access and pipelining. In fact, for a single value we have a parallel time of

Stuem + 3comm + Stwas + 3ogy as Opposed 10 424y n + 12,0 + 12,44 for the sequential method.
Evaluation of N points using this pipeline involves (N + 2)(fpem + lwar + fadz) 8s Opposed to the
sequential time which is 42Nt + 12Nt + 12N1ey. In this case, the speed-up is at least
12N/(N+2) and the efficiency is at least 1 for N larger than 10. This provides another example of
the well-known fact that efficiencies greater than one are easy to obtain if we consider poor

sequential algorithms.

3. Note that the trivial evaluation of a polynomial of degree one takes only two arithmetic steps
(one multiplication and one addition), 3 memory accesses and one index time and thus this

evaluation can be done fastest on a single processor.

4. PARALLEL ALGORITHMS FOR POLYNOMIALS IN TWO VARIABLES

In this section we will consider three types of algorithms: parallelized versions of the algorithms
presented in the previous section, parallelized versions of matrix algorithms, and pipelined algorithms
based either on the deCastlejau method or on the method of finite differences.

"I‘he evaluation of polynomials in two variables can be described in terms of the evaluation of
polynomials in a single variable. A simple way to do this is to recognize that a polynomial F in two
variables 4 and v can be considered as a polynomial P in one variable v whose coefficients are poly-
nomials Q; in the variable u. Using this idea, the time for sequential evaluation of a polynomial F
where u and v appear to at most the third power is four times the time for the evaluation of a polyno-
mial in a single variable & (since there are four polynomials as coefficients) plus the time for evaluation
of a polynomial in v whose coefficients are the Q;. This is 5 times the values of the time given in the
previous section. Using Horner's method as a starting point, the time for evaluation is

5(3tadd + 3tmuit + Tmem + linder) + 8lmem + Hindex

where the additional terms are obtained from accessing the Q;.

-11 -

A matrix method is frequently used for sequential evaluation of polynomials in two variables on a
single processor. This method involves the quadratic form UMVT where U and V represent the row
vectors 1, u, 2, u® and 1, v, v*> v3, M represents the matrix of coefficients, and the superscript T indi-
cates the transpose. This involves 4 multiplications for the powers of the variables, 20 multiplications
involving coefficients, 15 additions, 55 memory accesses, and 40 index accesses. The total can be

reduced by removing redundant multiplications by 1 to

15t0ig + 19y + A5t ppm + Flinier » “.n
which is slightly slower than the first sequential example.

The computations in this algorithm can obviously be speeded up by performing some of them in
parallel. For example, each of the 4 multiplications of a row and a column vector can be done in paral-
lel with the last results being communicated to a single processor. Using 4 processors, the time is
reduced to

Ologg + Olpuyy + 18tpm + 16linder + comom - 42
and the speedup is

15t04g + 19ty + 45tuem + 40tinses
6logy + Olpusy + 18t pm + 160inger + M oomem

In the remainder of this section, we will consider the extent to which the times in equation (4.2) can be

improved if some of the computations are done in parallel.

We will use the term bicubic polynomial to denote a polynomial in two variables with real

coefficients such that each variable appears to at most the third power.

Theorem 2 : Let P(u,v) be a bicubic polynomial in the real variables ¥ and v. The speedup in the

time to evaluate P (u,v) using two processors and no matrix methods is at most -

lew + 151,.,“ + 43tm + 191,.‘“

4.
Uadd + Mot + Wtpem + 10index + Loomm @3
and the efficiency is at most 19/10. Using four processors, the speedup is at most -‘iﬂ
15t“4 + 15‘,““ + 43‘m + lgfm (44)

Oloadd + Otpuss + 15tmem + 10tinder + lcomm

and the efficiency is at most 43/15.

-12-

Proof.

In the algorithms given for evaluation of a polynomial in a single variable presented in the previ-
ous section, all of the coefficients were assumed to have been loaded into the memory of the appropri-
ate processor. In addition, the time for the pre-processing of the original coefficients in Knuth's algo-
rithms (A3.1a, A3.2a, A4.2a, and A4.2b) was ignored since it was presumed to have been small com-
pared to the large amount of time needed for evaluation of the polynomial at many points. Neither of
these assumptions may be used directly in the case of polynomials in many variables since the depen-
dence of coefficients of a polynomial pre-processing and loading of coefficients has not generally been

done prior to the evaluation of the polynomial.

For two processors, there are two basic organizations possible: use a parallel algorithm for each
evaluation or use sequential algorithms for the polynomials in one variable, using each processor in a
sequential manner, with communication between processors at the end. Using the parallel Homer's
algorithm A3.2 five times, we have a time of

5ot + 3tpuds + Almem + Lindex) + HMoomm “45)
to which we must add the time for extra memory accesses due to the various coefficients of the already
computed polynomial in one variable not being in the memory of the correct processor for the computa-
tion of the polynomial in two variables as well as time for communication. Using the most efficient
choices causes the total obtained by using A3.2 five times to change from equation (4.5) to

10004y + 150puuy + 28t pem + 18index + Tleomem - (4.6)
A similar design using a parallel Knuth’s algorithm A3.2a five times gives a total time of

S(2add + 2t + Stuem + 2linder + Leomm) + Slmem + Mindex + 1, @.7
where ¢ represents the time for "pre-processing” the polynomials in a single variable to become
coefficients of a polynomial in two variables. This last step is necessary since the output of Knuth's
method is a polynomial in standard, not pre-processed form. This pre-processing takes many additions
and multiplications and cannot be ignored since it is done whenever we evaluate the polynomial in two

variables. Thus this algorithm does not easily parallelize.

The other method that we consider involves using scquential methods as long as possible. Here

T T T T T "

13-

we use processor 1 0 compute the polynomials Q, and Q, with processor 2 computing Q, and Q4 fol-
lowed by a parallel evaluation of the polynomial in two variables. The total time is
2(3‘.’4 + 3‘,@ + Tpem + Iingex) + 6‘m + Uindes +

add + it + Amem + Lindes + Blmem + Hindex + Lcomm

for a total of

Nogd + Vputt + 24Im + 10:;,4,, + loomm (48)
which is considerably smaller than either (4.6) or (4.7). This proves (4.3). To prove (4.4), we simply

apply the same reasoning to the case of four processors and keep track of added communication,

memory and index times to obtain the desired result. This completes the proof of the theorem.

Theorem 3 : Let P(x,v) be a bicubic polynomial in the real variables 4 and v and suppose that P is
to be evaluated at N points without using matrix methods. Then the speedup in the evaluation time is

asymptotically the same as in theorem 2 for the case of two processors and

AN (15t00g + 19ty + AStpem + A00inder + Sluem)

(5N + 8)((Blazd + tmutt + Nmem + 3lindes) + Sloem + Mindex + Nloopem) @9)
for four processors. If five processors are available, the speedup improves to
N(15tug + 19 mg; + A5tmem + A0linder + Stoem)
(15taga s index) @.10)

(N + D(Badd + 3wt + Tmem + tinder) + N (Bluem + Hinder + Homm)

Proof.

For a two processor system, one of the processing elements will be idle much of the time in the
final computation of the bicubic. This is still the case if there are many points at which the bicubic is
to be evaluated and hence the speedup is essentially limited by the factors slowing down the evaluation
at a single point. The maximum speedup is dependent on careful programming to minimize idle time;
in any event it is similar to the results previously given.

Note that the effect of ¢,,., has been changed in the numerator of (4.9) and (4.10). This was done
to account for the new loading of the values of the coefficients into memory at initialization; this was
not considered previously. To evaluate a bicubic polynomial at N points using four processors, we
must also have some amount of idle processor time. The results from each of the single variable evalua-

tions must be made available to the processor performing the evaluation in the second variable. The

.14 -

evaluations being performed are given below.

PROCESSOR 1 PROCESSOR 2 PROCESSOR3 PROCESSOR 4

1 1 1 1
I 2 2 2
2 3 3 3
2 3 4 4
3 4 4 5
4 5 5 5
5 6 6 6

The state of available processors is precisely the same in this last state as it was in the second
state where evaluation 2 was being done on processors 2, 3, and 4. Thus the time for evaluation of N
points is the sum of an initialization time plus a time for getting to the same state plus a time for termi-

nation. The total is dependent on the value of N modulo 4; in the simplest case it is

(5N + 8)((3tatd + 3tputt + Tlmem + lindex) + Blmem + Hindex + dNtoomm V4 .

Considerable improvement is possible if we have five processors available. In this case, the
evaluations of the polynomials in a single variable are done on four processors and the fifth processor is
devoted to evaluation of the bicubic after data is transmitted to it. The total time for evaluation of a
bicubic at N points is thus approximately N times the time for evaluation of a single variable polyno-
mial with an additional time added for evaluation of the last bicubic on the fifth processor. The actual
total is

N + DBad + 3outs + Tlimem + index) + N Btmem + Hindex + dcomm)-

This completes the proof of the theorem.

.'VT ‘..v'

RS B

-15 -

The next method we consider is that of using pipelined architectures. Modifying the method of
deCastlejau leads to a pyramidal architecture scheme in which there are 16 nodes at lowest level,
grouped into 4 collections of four nodes each. Each of these collections computes a different polyno-
mial in one of the variables and sends its output to another collection of nodes using the same pipelined
design as considered in the previous section. This last collection of nodes takes the values of the
second independent variable and continues as in the deCastlejau model in the previous section to com-
pute the values of the polynomial in terms of the second independent variable and thus produces the
output of a polynomial of appropriate degree in both variables. As before, the polynomial is not in
standard form but instead appears in a form conducive to numerical computation. The next result is
easily obtained using the same reasoning as in the analysis of deCastlejau’s method in the previous sec-
tion; the proof is omitted. As before, efficiency larger than 1 is possible for this algorithm using a
pipelined architecture.

Theorem 4: The speedup using deCastlejau’s method instead of sequential evaluation to evaluate a
bicubic polynomial at N points is
S5(42Ntpem + 12Ntpss + 12Nt09)

(N + 6)(tmem + toutt + badd)
The efficiency is 60N /(N +6), which is greater than 1 if N > 12.

5. DISCUSSION

The primary motivation for the research in this paper was the controversy generated by the papers
{2], (5], and [9] and the observation in [4] that many parallel algorithms do not perform at or even near
their theoretical limits on many actual parallel machines. The algorithms were implemented in assem-
bly language on a simulator which can be configured to model a number of different distributed system
architectures and CPU’s. Implementing these algorithms using low level assembly languages emulated
the actual running of a computer and avoided making any assumptions about the quality of code gen-
erated bya compiler or assembler. Each load or store instruction was counted as a memory access and
it was assumed that the time for data transfer into and from memory is the same. In general, the

observed execution times showed good agreement with the theoretically obtained times described earlier

-16 -

in the paper.

The optimal number of processors for parallel computation of second, third, or fourth degree
polynomials of a single variable at a single input value on non-pipelined systems is 2. While it is pos-
sible to obtain a parallel algorithm for particular choices of polynomials, communication and synchroni-
zation constraints make it difficult to design an efficient generalized parallel algorithm which is
independent of either underlying connection architecture or the actual architecture of the processor ele-

ments.

Note also that the models of computation described in this paper all assumed that the processors
shared no common memory; this assumption is common in hypercube computers. However, shared
memory simply reduces the time for inter-processor communication and thus the value of the quantity
teomm Will be smaller than in a non-shared computer. Of course, the time represented by it will still be
present in any real situation. For example, the reference [3] has an example of the use of the method
of finite differences to speed up sequential evaluation of bicubics. Unforwnately, it seems that a pipe-
lined method such as the method of finite differences can only be used on a shared memory multi-
processor system. No speedups were found using this method for evaluation of bicubics on our simula-

tor for any archiiecture.

For quadratic functions, Horner’s method provides the best pre-processing scheme. Hence the
sequential processing of a quadratic will exploit this scheme. On the other hand, for n 2 3, the scheme
by Knuth [6] will be utilized. In this example also, there is no need for more than 2 processors. Even
for n = 4, the optimal number of processors is apparently 2. Furthermore, parallelizing evaluation of
cubics via Knuth’s pre-processing scheme on a 2-processor computer cuts the multiplications to 2, addi-
tions 10 2, and memory accesses to 5 with 1 inter-processor communication. Nevertheless, the speed-up
obtained is actually an approximate value because of the pre-processing involved. To obtain the param-
eters in the pre-processing scheme, n+1 simultaneous equations have to be solved. The roots of these
equations may even be complex. Therefore if the same polynomial is not to be evaluated at numerous x
values then this method may not be superior to Homer’s. Given this fact, our experiment indicates that

using Knuth’s scheme for low degree polynomials, evaluation can be implemented on a 2-processor

o

-17-

computer but that the efficiency is considerably less than 1.

The optimal number of processors for evaluation of bicubics at N points is a multiple of 5 assum-
ing that the communication times between processors is constant. If the number of processors is a mul-
tiple of 5, then the results given in theorem 3 can simply be divided by an appropriate constant.

A final remark is in order about bottlenecks in a system for display of the bicubics that we con-
sidered in this paper. Most computer graphics systems use either a raster-type output device such as a
CRT screen or laser printer in which the picture is scanned one line at a time or a vector device where
a writing device moves from one point to the next rather than a line at a time. The most common
example of a vector device is a plotier although vector CRT screens are still available. In general, all
of these devices are sequential and vector devices in particular are not well suited to parallelization.

Perhaps the next step is special parallel output devices.

Acknowledgement
Research of Ronald J. Leach was partially supported by the U.S. Army Research Office under

contract number DAAL-03-86-G-0085. Research of Ronald J. Leach, Razeyah R. Stephen, and O.

Michael Atogi was supported by a Howard University Research Grant.

pr——

-18 -

REFERENCES

1. W. S. Dom, Generalizations of Homer’s Rule for Polynomial Evaluation, /IBM J. Res. and Devel. 6

(1962) 239 -245.

2. V. Faber, Olaf M. Lubeck and Andrew B. White, Jr., Comments on the Paper "Parallel Efficiency

can be Greater than Unity", Parallel Computing 4 (1987) 209-210.

3. J. D. Foley and A. van Dam, Fundamentals of Interactive Computer Graphics, Addison-Wesley,

Reading, Mass., (1982).

4.].]J. Hack, Peak vs. Sustained Performance in Highly Concurrent Vector Machines, /JEEE Computer

19 (1986) 11-19.
5. R. Janben, A Note on Superlinear Speedup, Parallel Computing 4 (1987) 211-213.

6. D. E. Knuth, The Art of Computer Programming, vol 2, Semi-Numerical Algorithms, Addison-

Wesley, Reading Mass., (1969).

7. H. T. Kung, New Algorithms and lower Bounds for the Parailel Evaluation of Certain Rational

Expressions and Recurrences, JACM 23 (2), (1976), 252-261.

8. L. Munro and M. Paterson, Optimal Algorithms for Parallel Polynomial Evaluation, J.Comp. and Sys.

Scis. 7 (1973), 189-198.
9. D. Parkinson, Paralle} Efficiency can be Greater than Unity, Parallel Computing 3 (1986) 261-262.

10. S. Winograd, On the Number of Multiplications Necessary to Compute Certain Functions, Comm

Pure & Applied Math 23 (1970) 165-179.

PE 9

1-x X

. PET PE S
1-x b 1-x x

PE 4 PE 5 PE ¢
1- x 1- x 1-x x

PE 0 PE 1 PE 2 PE 3

-)

GEOMETRIC CONSIDERATIONS IN BLENDING SURFACES

Ronald J. Leach

Department of Systems & Computer Science
School of Engineering
Howard University
Washington, D.C. 20059

L. INTRODUCTION

. A major problem in solid modeling is computing a "blending surface™ between two intersecting
surfaces. In a typical example, the surfaces are described by some polynomial equation of low degree
and the blending surface is intended to provide a transition between the surfaces. The actual form of
the blending surface or its equation are generally not as important as the need to rapidly compute the
mfaeemcdernbeabletomenmanmmvesym For an example of a blending surface,
look at a standard telephone.

One obvious method of describing the blending of two surfaces is to use the surface that is swept
out by a rolling ball tangent to both of the surfaces. Unfortunately, this method often has the undesir-
able effect of having blending surfaces which have much higher degree than the surfaces to be blended, B
which are often quadric. Strange geometric effects are often associated with this type of blend, particu-
larly when there are more than one surface to be biended.
Many authors ([21,(31.[41.(6].(81.(9]and (10]) have considered the problem of the generation of
blending surfaces. Middleditch & Sears {6] describe blending by a method which gives blending sur-
faces of degree 4 if the surfaces to be blended are of degree 2. In [10], the author considers using other -
blending surfaces described by toroids and cylindrical pieces in which the blending surfaces also have
low algebraic degree.
Hopcroft & Hoffman have taken another view. In a collection of papers ([2], [3] and [4), they
develop a2 method that they call the projective method. This method uses some techniques from alge-
braic geometry to obtain a surface which blends two surfaces by choosing curves on each and then
obtaining a surface which is tangent to the surfaces at the given curves. In [3], they show that if the
curves are quadratic curves and the surfaces are quadric, then the blending surfaces are of degree four.

All of these methods lead to sur“aces which blend the existing surfaces. In many but not all
applications, they provide satisfactory results from an aesthetic point of view. We note that there are j
typically two concemns for blending surfaces in these papers: rapid computation and description of the #
surfaces by simple equations of relatively low degree. The equations of low degree are desirable since
blending is of*x followed by shading and by ray tracing. The sh=ning and ray tracing algorithms are
far simpler and .aster than if the degrec of the surface is small. The only geometric constraint ever
used is that of tangency to the surfaces, often in prescribed curves.

In this note, we consider the generation of blending surfaces which atempt to minimize the sur-
face area of the blend. Our technique will involve a mathematical theory known as the calculus of *
variations. We present an analysis of thc (ifficulties involved with this technique and show the applica-
tion to several problems.

This paper is grouped into four sections. Section 1 is the introduction. In section 2, we give
some results Som the calculus of variations that are relevant to blending surfaces. In section 3, we
apply these results to some simple blending surfaces. In section 4, we analyze the results obtained and ' Q

#

close with some suggestions for implementation and for future work.

2. RELEVANT NOTIONS FROM THE CALCULUS OF VARIATIONS
The calculus of variations was largely developed by Euler and Lagrange in the seventeenth cen-

" tury. It is concemed with the problem of obtaining a curve or surface which maximizes or minimizes

some function of the curve or surface. In the case of a curve, the problem 10 be solved generally
. inimizine or maximizing the functional

Jol=[Fryd)

where F is some function of x, the unknown curve y = y(x) and y represents the derivative of y with
respect to x. For simplicity, the limits of integration have been omitted. The solution to this problem
must satisfy the well-known Euler differential equation
. N d
F}'T;Fy’

These results can be extended to problems involving surfaces and higher derivatives; in fact, we will
use the extension to functions of surfaces later. A huge number of papers have been written on this
subject. The text [1] is an excellent reference for the theoretical background needed for a complete
understanding of the subject as used here as well as derivations of the major formulas. We will be con-
cemed with two uses of the calculus of variations with regard to the problem of finding the surface of

The first problem we consider is the following (1, p20-21]. Among all smooth curves which pass
through two fixed points P and Q, find the one for which the area of the surface of revolution formed
by revolving the curve about the x axis is a minimum. This leads us to the problem of finding a func-
tion y =y(x) whose graph passes through P and Q and which minimizes the surface area given by the
integral ,

J)=[y V1+dyids? dx .
In this case, the Euler differential equation becomes
which has the solution
y =C cosh((x + KYC)

This function y will be the unique solution of the problem provided that a single curve of this
form can be drawn through P and Q. There is always a smooth solution provided that the slope of the
line joining them is sufficiently small; in the limit as x2 - x1 approaches 0, the slope must approach 0.
Note that the graph of the function y(x) is a catenary which is the shape of a heavy cable with no extra
load and which is acted only by the force of gravity. The surface of revolution is also well-known; it is
called a catenoid.

In the next example, we consider the much more interesting problem of surfaces that are not sur-

faces of revolution (1, p22-24]). For the case where the surface can b~ written in the form z = z(x,y),
the problem is to find the minimum of the functional

Jo)=[f NTaTogF
and thus Euler's equation has the form
r(1+q®-2pq +t(1+pH)=0
where

P54 =2,7 =2g S =2y t =2, .

. ‘The left hand side of Euler’s equation is the numerator in the equation of the mean curvature of
';tbmfwemmmwhowmnmyamwhnhmmuumwmmmMMOMm- .
vatmre. See [I] and [5] for a discussion of the meaning of these terms in differential geometry. Note
that this analysis did not make any use of the underlying region of integration and that in particular did
not use the boundary conditions which are necessary for a blending surface. (For a discussion of this
topic, see [1, p173-176]). In general, the non-linear partial differential equation is difficult w0 solve
explicitly, even in the simplest cases. In addition, there are often many solutions to the partial
dxffetumaleqmonforgxmbounduycondiﬁonswhichmnotevenbcalsoluﬁonsmthepmblunof
minimizing the total surface area.

We have two choices in this situation. We can ask for a complete solution of the partial
differential equation with the appropriate boundary conditions and require that the solution also minim-
ize the area. Of course, we must expect that a large amount of numerical computation will be neces-
sary. Another choice is to find simple solutions to the Euler equation, even though we ignore the boun-
dary requirements. This method will provide blending surfaces with 0 mean curvature, but is unlikely
to actually minimize the surface area,

In this paper, we elect the second option. We wish to use as our solution of Euler's equation the
following surface called Enneper’s surface by Rassias (8, p429). We will change the notation of (8)
shgmlymwmzthemfaceuasamx-y—zspacewxmd\emrfacebemgtbexmageot‘dtedlsk‘
u2 +v2<r inthe u-v plane. The surface is given by the equations

z-u+uv3--;-u

y=-v-uly +-;-v’

2

t=ul-vy

As is clear from figure 1, thesmfacexssxmplyconnecwduasubsetofk’andnssxmple(not
self-intersecting) for r < ¥3 [8]. Consequently, it is simple for the unit square, which is a smaller set
(Gigure 2). It is easy 1o check that this surface satisfies the Euler equation and thus has 0 mean curva-

W

3. API’LICATIONS

. md:epemusmmmcmswmpmblemofdemngmmnmlsmfmsmmcm
. restrictions. We obtained a complete solutions only for surfaces of revolution. For other surfaces, we

mabletoobmntliemdonofthemrfacehavmgOmeancurvamrcandgaveanexampleofa

--sinxplersurface: with -this" property. In' this section, we apply these results to a few examples of simple

blending surfaces.

Our first example is that of a cylinder of revolution intersecting a plane surface in a right angle.
mﬂnsnmanm.mmmuofmolmmmwmaymmemdmfxeofﬂnm
vious section. In figure 3 we show the two surfaces without blending and in figure 4 we use a blending
surface. The blend is a catenoid obtained by rotating the curve

y =C cosh((x + KYC)

about the x-axis. The local coordinates (-K,C,0) are chosen for the intersection with the plane x = 0
and the coordinates (0,C,0) are chosen for the intersection with the cylinder.

o adt x

A W ¥

N N

qv red

Fiqure ¢

Our second example is typical of many problems in this field in that simple geometric surfaces
may lead to somewhat complicated blending surfaces. We consider the case of two right cylinders of
equal radius intersecting at a right angle. In figure S, the two cylinders are sketched and their intersec-
tion is given in bold. Inﬁgme&weuseablmdconsxsungofpomonsofEnnepasmface.

..4

*.-

4. ANALYSIS OF RESULTS OBTAINED

We have ‘prescnted two ‘surfaces w-be used in blending problems. Tlié primary goal was to

miniﬁiztﬁemfacemofﬂubkndingmfmewﬁhanusﬂyc&npuwdam Use of these blend-
ing surfaces have been demonstrated in two examples of somewhat different nature. It is reasonable to
gknowmmfacumuthemnlmmfc:blmdmgmfm That i, are they.-smalil. perturba-

" vions; easily computed, géometrically significant, and well-suited to control by a user of a solid model-

ing system?

We first consider the question of speed. Using the cubic surface of Enneper described in this
paper requires the computation of a cubic polynomial in two parameters u and v. For the blending of
two quadratic surfaces, this is slightly faster than the computation of the general fourth degree blending
surface that is generated by the projective method of Hoffman & Hopcroft or the fourth degree surface
generated by the method of Middleditch & Sears. It is certainly faster than the higher degree surfaces
that have been used by other authors. For higher degree surfaces, our method still uses a cubic blend-
ing surface while these other methods produce higher degree blends. In addition, our method works for
non-polynomial surfaces whereas the projective method does not.

For situations such as in the first example considered in this paper, blending surfaces of revolu-
tion are useful At first glance, they appear to be highly complex surfaces which require -extensive
computation to plot. However, the catenoid given here depends on two parameters C and K which
depend on the points chosen as controls. We could have used a lookup table for the values of the
catenary which is to be rotated. This speeds up the computation of the blending surface but may cause
a large time penalty if ray tracing is to follow the blend because of the time needed to compute the
intersections between the surface and rays of light. This excess computation may be reduced by replac-
ing the hyperbalic cosine by the first few terms of its Taylor expansion about the origin as in figure 7.
We note the similarity between the surfaces in figure 4 and figure 7 . This is an example of another
phmommmmpuwwhmmwhchmmﬁmtapmmmmofawﬁcegxwmﬂn
pu:tmu. :

AV

846

In the more difficult case where we do not have surfaces of revolution, the more general type of
blending surface is needed. Here we use a cubic surface which is simple to compute. It often requires

-

b
-6

a cerain amount of patching but this is unavoidable in many instances..

haebdd\emnnnomdmumdmmspapu weobtamedblendmgsmfacudmmsmn

‘-paunbanons.easilycomputedandweﬂsmtedtocomlbyausuofageommcmodelmgsyswm. In

the first case of surfaces of revolution blending into another surface of revolution about the same axis,

: the result minimizes surface area. Inthesecond.moregenaalsmauon.meprpposedblmdxsasolu- .
.--'~'~mldWstd‘wmrmnynﬂmnhﬂnmém BRI EL N
Unfortunately, these blending surfaces are not tangent to the given surfaces in general Wemay
elect o cither accept these non-tangential blending surfaces as is or to reblend them near the points of
intersection of the blending surface and the given swrface. A “reblend” in this case would involve treat-
ing the blending surface as a small perturbation and then multiplying the values of the blend by a small
parameter approaching O rapidly. Perhaps the use of lookup tables for the exponential function and the

catenary for small values of the variable x would be appropriate in this context.

An additional problem with most existing approaches to blending surfaces is that the geometry -of
such surfaces is not always well understood or related to the “reality® of the situation. In particular,
many blending algorithms when applied to even simple examples such as quadric surfaces which
describe solid objects, cannot be guaranteed to lie entirely outside of the existing objects in the case of
external blends. A similar problem also occurs for internal blends. Future work will consider this
.problem. as well as the nature of the reblends mentioned earlier.

T ——— e o

\J'g

e

m

REFERENCES

L 1 Gclfand.LM..andSV Fomm Calculus ofVanaaons (R.A. Sllvermanuans) .Pn:nnce-

. Englewood Cliffs, NJ ;1963.

’t -

2. Hoffman, CM. and J.E. Hopcroh. Quadraac Blending Surface: Computcr Azded Desxgn ,
8.No 6 301-306 Jnly/August 1986

-+ 3." Hoffinan,'CM. and JE Hopcroﬂ. ‘Absomatic Surface Generationin Computer Aided Dengn IEORS

TheVisnlComplmt 1,No2 , 92-100 , 198S.

4. Hoffman, CM. and J.E. Hopcroft, The Potential Method for Blending Surfaces and Corners ,
Geometric Modelling (G. Farin,ed.) , SIAM , Philadelphia, PA, USA , 1986.

5. Holmstrom, L., Piecewise Quadratic Blending of Implicitly Defined Surfaces, SIAM Confer-
ence on Applied Geometry, Albany, NY, 1987.
6. Middleditch, A. and K. Sears, Blend Surfaces for set Theoretic Volume Modelling Systems ,

SIGGRAPH Comp. Graphics , 19 , 161-170 , July 1985.

7. Phillips, M. B., and Odell, G. M., An Algorithm for Locating and Displaying the Intersection
of two Axbirtary Surfaces , IEEE CG&A , 48-58 , IEEE , Sept. 1984.

8. Rassias, Th., On the Morse-Smale Index Theorem for Minimal Surfaces , in Differential
Geometry, Calculus of Vanaaon: and Thczr Applications, , 429452 , Marcel Dekker , New York ,
1985.

9. Rockwood, A., and J. Owen, Blending Surfaces in Solid Geometric Modelling , Proc. SIAM
Conference on Geometric Modelling and Robotics , Albany NY,USA , July 198S.

10. Rossignac,J., and A. Requicha, Constant-radius Blending in Solid Modelling , Comput. Mech.
Engr. , 65-73 , July 1984.

9

e

___‘_-—--—‘

I

1]]

- . =
Tt v o -
Tt 1
- -
- -
) o et o
) — —
, — e L | 0 g - -
. -
et
r -
T
- -
A wamet —u—3

> o |

> o

=

144

I { N\N
1 AN 77
\ 4 /7
\ yAVA
A// y
4
1
ﬁ
i
H
i
i
H
Il
. \
b

"
|1
|

I

T > -
v oo & > 4

{ A ottt e et 40 e et il B et ek A - ' — .

MINIMAL BLENDING SURFACES

Ronald J. Leach

Department of Systems & Computer Science
School of Engineering
Howard University
Washington, D.C. 20059

1. INTRODUCTION

A major problem in solid modeling systems occurs when two solids intersect. Generally, it is not
sufficient to simply compute the intersection of the two surfaces that bound the sol’ *.. It is often more
‘ important to replace the two surfaces near their intersection by a blending surface which allows a
smooth transition between the surfaces. Blending surfaces should have the properties of being : easily
computed, well suited to being accessed by other software in the solid modeling System, and being
geometrically accurate. Many papers have been written on the subject of blendine ~urfaces using a
S variety of techniques; (4], (5], [10], [11), and {12] are somewhat typical.
i Some of these papers consider the blending surface as the final step in a ™nresentation and
display process. They emphasize the aesthetic appeal of the blending surface and are somewhat less
concerned with the analytic and computational properties of the blend. The blend surfaces obtained are
typically appealing, but are often difficult to integrate rapidly into the other portions of the solid model-
ing system because of the high algebraic degree of the surfaces obtained. Other papers (e.g. [11])
emphasize the integration into a solid modeling system but do not emphasize geometri spects.
Other techniques for blending surfaces emphasize the analytic requirements for rapid computation
while not emphasizing the global geometric properties of the surface. An example of this is the projec-
tive method of Hopcroft and Hoffman [4] which computes the surface of minimal de~ree which is
angent to certain surfaces in prescribed curves. Their method gives the blending surface of minimal
degree which is tangent to the given surfaces in the prescribed curves, but no conditions on the
geometry of the surfaces is given.
The purpose of this note is to study the applicability of blending surfaces which =~ omputation-
ally tractable and which are also "minimal surfaces”. Minimal surfaces have a particular property
which is related to but not always identical with minimizing surface area; the exact relationship and the
mathematical foundation is discussed in section 2. This minimizing property is very desirable in a solid
modeling system since the goal of blending surfaces in such a system is to provide a smooth transition
between solid objects which can be efficiently implemented by antomated manufacturing tools ‘such as
milling systems. -
In this context, computationally tractable generally means that the surface is of low degree. In
this paper, wewﬂconmda&osesmfacswhchmbomcompumomnymblemdgeomemcauy
significant”
The paper is osganized as follows. In the next section, the background results and terminology
for the discussion of minimal surfaces is given. In section 3, we consider surfaces of degree 2 and %
show that the only minimal surfaces of degree 2 are planes. It would be natural to perform the same
annlysis for surfaces of degree 3 and 4 by considering all of the possible cases. How::vcr, there are 99
possible types of surfaces and many of these types invoive so many coefficients that analysis is beyond
the limits of the symbolic computation program MACSYMA (and hence beyond the limits of any
human performing the aigebraic computations). Thus in section 4 we consider an alternate representa- :
tion for minimal surfaces. In section 5 we show some examples of the use of minimal blending sur- ‘!1
faces and the effects of certain degrees of freedom on the behavior of the surfaces. Section 6 provides)
a summary of results. The ~aper closes with a discussion of some open problems.

2. MINIMAL SURFACES

A minimal surface is defined as the set of all points (x.y,z) which satisfy the second order rou J
5Ef ial .

r(1+¢% - 2spq +1(1 + p?). 2.1)
where

P=t.q=2 T =In ,5 =1y ,t =1, @2)

In differential geometry ([1], [2], [7], [9]), it is well-known that the vanishing of the left hand &~ of
this equation implies that the mean curvature of the surface is 0.

The partial differential equation is obtained as the solution to a "variational problem" of minimiz-
ing the surface area. An infinite number of functions satisfy the equation; this is not surprising sip~ w0
boundary conditions are given. Unfortunately, even when complete boundary conditions are given in
the form uf requiring that the surface must pass through some boundary curve, there may be many solu-
tions, not all of which actually minimize the surface area over the class of all curves which pass
through the given boundary curve. The reader should think of soap bubbles as models of surfaces
hich minimi face area.

A word on the methodology used in this paper is in order. As was indicated in this section, exten-
sive use is made of the symbolic manipulation program MACSYMA to actually compute the low
degree surfaces which are also minimal surfaces. MACSYMA is a trademark of Symbolics, Inc. The
computations were perfarmed on a SUN 2/120 workstation running UNIX. The workstation had a phy-
sical memory of 4MB and a virtual memory of approximately 20.1MB. The original goal of this
research was to characterize all of the minimal surfaces which were of low degree by making use of
MACSYMA for the computations. We will see in the next section that extensive analyses and
snmphﬁcanomhadmbedonemordenobeable:ouseMACSYMAeﬂicnmﬂyandnotemeedthehm—
itations of the workstation.

Of cours:, the limitations of MACSYMA and the memory of the workstation are relevant only
during the characterization of those surfaces which are actually minimal surfaces. The actual computa-
tion of appropriate minimal blending surfaces in applications is quite rapid, once the preliminary ana-
lyses have been made.

3. SURFACETS OF DEGREE 2
The most general surface of degree 2 is given by the implicit equation
Fxyz)=Ax>+Bxy +Cy>+Dxz +Eyz + F22+Gx +Hy +Iz +J =0 N
This equation involves 10 coustants of which 9 may be arbitrarily chosen.

The goal of this paper is to characterize the low degree minimal blending surfaces. A brute force
computation of the result of the differential operator of formula (2.1) on F(x)y,z) using implicit
differentiation lcads to an expression wlhich requires six pages to print and which cannot be factored
directly within the memory limitations of the computer. Clearly a simplification was needed, espec.all,
since the intention -6f this research was to classify the potential minimal blending surfaces of low
degree. The only possibility is to consider classification of the various surfaces that can arise from the
expression F (x.y.z). One obvious simplification is to observe that all of the linear terms can be ¢¥-n-
inated by translaton. It is less clear that that all of the mixed terms can be eliminated by appropriai.
rotations; the original observation of this was appareatly due to Euler. We note that translations and
rotauons leave the minimal surface equation invariant. We will use the invariance of the minimal equa-
tion frequently without mention while considering possible simplifications of various expressions. -

R moval of uie mixed terms leaves several possibilities: the variable z does not appear and thus
the surface is of the form

Ax?+ By*=C (32
which is an elliptic cylinder, hyperbolic cylinder, or two planes; the variable z appears to only the first

power and thus the surface has the equation
z=Ax2+By*+C (3.3)

which is either a paraboloid (elliptic ar hryperbolic) or a parabolic cylinder; or the variable z appears to
the second power and the surface has the equation

2, 22
—t=te=1 4
2 a2 b G4

Here all of the unnecessary linear terms have been eliminated; none of ¢, b and ¢ are 0. We consider
separately the cases where z does not appear, where it appears to the first power and where it appears
to the second power.

If z does not appear as in equation (3.2), then the minimal surface equation implies that the sur-
face must be a portion of a plane.
If z appears to the first power only as in equation (3.3), then the minimal surface equation yields
2A ABY2+1)+2B 4AX2+1)=0
which is only possible for arbitrary x, y, and z only if A = B = 0 and therefore the surface is a plane.
When the variable z appears to the second power as in equation (3.5), the minimal surface equa-
tion yields two possible solutions : either the surface is a horizontal plane or else
(E-D)Cx2? + DC? + D*C
e DC? - DE 3.
The first equation is that of a plane. The second equation (3.6) implies a restriction on the surface in
that its points must also lic on another surface, which as we saw earlier was a paraboloid.
Thus we have obtained the following result.
Theorem
The only minimal suiiaces of degree 2 are planes.

4. HIGHER DEGREE SURFACES
The most general surface of degree 3 is given by the implicit equation G(x.y,z) = 0, where
G(xyz)=Ax*+BxY + Cxy>+ Dy® + Ex%z + Fe? + Gz* + Hy%z + Iyz22+ F(xy2) (4.1)

and F(x y,2) is an arbitrary second degree expression in x, y, and z. As before, the minimal equation
for this general expression is too complicated to submit to a symbolic algebra program and thus we
resort to some simplifications. The number of possible cases is considerably larger than the number of
possibilities for degree 2 surfaces. Salmon (13] indicates 23 possible forms which are classified accord-
ing to what he calls their "class” and "singularities”. An examination of 5 of these forms failed to yield
any minintal surfaces after considerable computer time per example and hence an alternative approach
was used. Note that the situation is even worse for surfaces of degree 4. Salmon indicates that there
are 76 different species of surfaces. The references [3], [13], and [14] describe the possibilities for sur-
faces of degree 2, 3, and 4.

L. [2], the authors descrits a method due to Weierstrass in which auxiliary mappings are used to
find parametrizations of minimal surfaces. The method is:

1. Chouse an open, connected subset of the plane.
2. Choose a complex-valued analytic function g and differential w in some domain D so
that the expressions @ a,, and .5 defined in (4.4) - (4.6) satisfy
at=0 42)
Sl 12> 0. 43)

-4-
3. Form the expressions @, 0», and o3 by
o =Q1-g37, 4.4)
oa=i(1+x’)%. @5)
0y =gw, 4.6)

4. Integrate the expressions on the right hand sides of equations (4.4), (4.5), and (4.6) from 0 to
z. Replace z by u +iv. To obtain the parametrization of the surface, set x, y, and z to be the real
parts of the integrals.

It is easy to see that if each of the o, is constant, then the surface is a plane. In addition, if g is
constant, then the expressions in equations (4.4) and (4.6) are proportional to one another and hence the
surface lies in a plane,

The choice g =z, w =1 leads to the surface known as Enneper’s surface [2] which is described

by
x=u-uT’+wz. 4.73)
V3
y=-—v+?-llz\’. (47b)
z = u2-v?, 4.7c)

This surface appears to be of high degree evea though no terms in the parameterization have degree
higher than 3; MACSYMA indicates a degree of 27 when using the "eliminate” command.

The choice g =z, w = z leads to a surface described by the equations
62 v2 v - Gutvi 4 ut

X= = 3 .
__uv-w? w
y= 2 2 ’
= 2= 3w?
3

The cesult from a8 MACSYMA computation 1o eliminate the parameters and write in implicit form is
even more complicated; it takes 1288 lines to display and has a degree of at least 32.

It is clear that minimal surfaces (except for planes) are either of high algebraic degree or not
algebraic. Based on these observations, we simply present several well-known minimal surfaces by their
parametric equations but will not attempt to write them in implicit form.

It seems likely from the above discussion that there are only two minimal surfaces of low
parametric degree. However, each of these surfaces has additional degrees of freedom. The constant
expression w = 1 can be replaced hy the complex constant e + fi. The parameters e and f control the
rotation and scaling of the surface. The effect of the other degrees of freedom is more striking. Each
term linear in z can ™= replaced by a term of the form A + Bz, where A and B are complex; this pro-
vides four additional degrees of freedom in the surfaces. The effect of these additional degrees of free-
dom will be discussed in the next saction. ;

The next three equations show how the original parametric equations of Enneper’s surface (4.7a
through 4.7¢) are influenced by the extra degrees. of freedom.

={1=a’+b%u +2abv _ (ac - bd)u® -~ v) - (ad - bec)Quv)

. 3 (4.7d)
_c@®-3w?) - d@ud - v}
6
(1+a%-"" +2abu _ {ac - bd)2uv + (ad + be Y(u? - v3) 4.7¢)

2 2

-5.

_cQButv —v) +du - 3w?)
6

2_ -
c(u v;) 2duv @70
This same possibility of increasing the degrees of freedom holds in all of the other surfaces considered
in this section to an even greater degree.

The catenoid arises from the choices g = e*, w = ~e™, which leads to the parametrization
x =cos(v)cos(u) -1,
y = sin(v)cosh(u) ,

Z=u.

z=agu-bv +

AminimalsurfaceduetoC.C.Chen[2]isgivenbyg=z+%.w=zzandhasthepammeni-
zation
r= 10udv2 - Suvt — w5 3wi-ud u
. 10 6 2’
- ~v3 + 10uv? - Suty . vi-3ud v
10 2 ’
= u* - Guv2 + v* . u? - v2
4 2
The final surface that we present here is due to Jorge and Meeks [6]. It is obtained by choosing
g=z andwa(z"“-l)"andleadstothepuameuimﬁonwherethecoordinaﬁes.y.andz are the
integrals of the real parts of the expressions &; given by
1-2™
2(zu+l_1)1 *
=i SI‘PZZ.! 48b
i aQ 12(2"_1_1)2' (')
22

a (4.8a)

(4.8¢)

S. ANALYSIS OF THE SURFACES

The goal of blending surfaces is to provide a transition between surfaces. A blending surface -

P should be easy to generate, appear in a form which can be computed rapidly, and interface well with

the solid modeling system in which it is being used. The s'wface should be aesthetically pleasing and
represent only a small amount of additional material if the actual solid is to be created by use of a
computer-guided milling machine. The use of the few fixed blending surfaces described in this paper
certainly meets the criterion of being easy to ge.crate since they are selected from a small list. They
are preseated here by their parametric representation and therefore can be computed rapidly, perhaps
not even requiring the use of any pai.hes. They share the saime difficulty as any parametric representa-
tion in that intersections with other surfaces defined parametrically are much harder to compute than if
the surfaces were described explicitly. They al:. allow a certain amount of possible interaction with a
desig=~r in the sense that some of parameters which provide the degrees of freedom can be altered to
change the surface. We will illustrate this in detail for Enneper’s surface which was discussed in the
previous section; the parameters u and v will be restricted to the unit square. In [8], this surface was
used for blending two intersecting cylinders of equal radius. The graph of Enneper’s n.inimal surface is
given in figure 1.

Figure 1 Enneper' s surface
The effects of the parameters a, b, ¢, and d of formulas (4.7d, 4.7¢, and 4.7f) on the graph of the
surface are shown in figures 2-21. The figures are grouped by varying each of the parameters singly
followed by consideration of several cases in which the parameters are allowed to vary together.
The first case that we consider is when the parameters b ¢, and 4 are all 0 and the parameter a
varies. In this case, the resulting surface obtained from the original Enneper surface is always a plane.
The graphs are shown in figures 2-4.

Figure 2 a = 1, buc=d=0.

T r———

Figure 3 a = 2, bucud=. ' e

JE————

e =

e ——

Figure 4 a = 3, bmc=d=0.

The effects of varying the parameters a, ¢, and d are shown in figures 5-6.

......

' o e s

......

. Figure 5 b =1, a=c=d=0. .

— W T

R

-9.
L e 1 L Y)
| R i
| 1
I 1 3
| D A
1
|
|
[
|
| . Al
[i
|
I
I =
[

P 1
1 1

Figwre 6 bz—i’. axc=d=),
The effects of the parameter ¢ vn t+ g.aph is more interesting, at least in the range that we are
showing here. The surface displays a twist which was not obvious in the original Enneper surface (the
case g = b =d 0, ¢c = 1) which was shown ir figure 1. The results are shown in figures 7-9.

- e e—— .-

Figure 7 ¢ = 2, a=b=d=0.

Figure 8 ¢ = 3, amb=md=0,

Figure 9 ¢ = 4, a=b=d=0

Tmi

-11-

The effect of the parameter d is shown in figures 10-12. Again there is a considerable twist in
some of the surfaces.

Figure 10 d= 1, ambmc=0,

Figure 11 d = 2, a=b=c=0.

-12-

Figure 12 d = 3, gmbmcn0,

-13-

Figures 1-12 indicate the effect of changing the parameters one at a time. The next case to con-
sider is when the parameters are varied two at a time. The simplest situation occurs when ¢ and d arr
both 0. An examination of the effect of the parameters a and b on the parametric form of the sur’we
given in equations (4.4), (4.5) and (4.6) for Enneper’s surface shows that the vanishing of ¢ and d
implies that the surface is a plane. For this reason, we omit the graphs in this situation.

In figures 13-20, we show the result of some variations in the parameters g and c.

|
:

T | bt L 1

Figwe 13 a=1,¢ = 1, bud=0. \

= ARN

Figure 14 a =1, ¢ = 2, b=d=0.

-14-

Figure 15a=1,¢c = 3, bmd=0,

1

T
¢ 4

Figﬁre 16 a=2,c= 1, bud=D,

-15-

———— .

Figure 17 a =2, ¢ = 2, bud=0.

Figure 18 a = 2, ¢ = 3, b=d=0.

-16 -

Figure 19 a = 3, ¢ =], bud=0.

Figure 20 a = 3, ¢ = 2, b=d=0.,

|

m

\ -17-

Notice that the level curves in the upper left comer of the graph in figure 20 are nearly straight,
indicating that this type of surface could be useful for blending where one of the surfaces is a plane.

The last variation of this surface that we give in this paper is shown in figure 21. It uses the
values @ =2 and ¢ =3 with b and d being 0. Many of the other choices of a, b, c, and d in the
manee of integers 0 .. 4 lead to surfaces which have cusps and are therefore unsuitable for blending sur-
faces.

— .
Figure 21 a = 2, d = 3, bmc=0,

The surfaces given in figures 1-21 indicate some of the modifications that can be made to a stan-
dard surtace using certain degrees of freedom which can be described by the parameters a, b, ¢, and
d. Additional degrees of freedom are available in the parameters ¢ and f. These two parameters were
not used here because in this example, they simply cause rotation and scaling of the surface.

The other potential blending surface that we show here is the Jorge-Meeks surface. This surface
is useful in blending together n cylinders of equal radius which emanate from the same center. The
graph of the surface is presented here only in the case n = 3. It originally appeared in [2].

—— e —

: -18 -

Figure 22

The effect of any of the degrees of freedom on the shape of the Jorge-Meeks surface is quite
complex and is probably not easily predictable to a designer without access to either a symbolic algebra
program or a nearby mathematician specializing in complex analysis.

i o -19-

4 6. SUMMARY OF RESULTS

The motivation for this po,er was the use of gemetric considerations in the development and
| implementation of blending a‘gorithms. As was indicated earlier, such constraints have typically not
been incorporated into the blending portions of solid modeling systems. The geometrical constraint that
we have considered here is mivmizing the surface area of a blending surface. This minimization of
] surface area was approximated by the use of a solution to the minimal surface equation (2.1) and a
3 solution of the equation was called a minimal surface.
h The simplest method of generating minimal surfaces was presented and examination of the
method indicated some previc. ..y unknown degrees of freedom in the minimal surfaces. The effect of
certain combinations of these degrees of freedom on the surfaces was indicated by several examples.
The results here can be incorporated into a solid modeling system in the following manner. The
user specifies the solids to be L.ended and (if desired) the curves on the solids through which the
required blend is to pass. The user then selects the type of fundamental blending surface: Enneper,
catenoid, Jorge-Meeks, Chen, etc. The choice is made according to the experience of the user in actu-
ally using the particular surfaces. The user then selects the appropriate degrees of freedom (a..f in the
case of Enneper’s surface) and selects values from a valuator device. The blends are then sketched
using a large value of the increment 50 as to be able to rapidly reject any obviously inappropriate
blends.
The number of degrees of freedom is considerably less than the number of degrees of freedom in
general even for low degree surfaces; Salmon described 23 "species” for the general surface of degree 3
which of course has many coefficients. The situation is much worse for surfaces of degree 4 and hence
our method makes the problem much more tractable by limiting the choices. The number of degrees of
freedom can often be reduced even more using our method by noting that certain of the parameters
represent rotation and scaling of the surface (¢ and f in Enneper’s surface) and that not all parameters
can be 0. The small number of degrees of freedom is appropriate for matching the blending surface to
the values of specific points on the surfaces to be blended.

v

7. OPEN PROBLEMS

The analysis given here concentrates on minimal surfaces which blend together two given sur-
faces. No requirement has been ms-e of tangency to the given surfaces. Incorporation of tangency
information would require use of i.agrange multipliers in the analysis. It is expected that the blending
surfaces will only approximate the actal tangency except in rare circumstances where the tangency is
exact. The primary concem o° tus paper was the use of blending surfaces which minimized surface
area. However, matyplcalmmmgopemuon.thevolumeofexmmatemlmalsounpomm(&pe
cially if the material is expensive).

Minimizing volume is generally impossible unless the blending surface actually follows the sur- -
faces to be blended exactly, in which case use of a blending algorithm is obviously pointless. It is pos-
sible to consider volume minimization over all surfaces of a fixed degree, both with or without con-
sideration of tangency to the surfaces to ‘be blended. We intend to retum to this' subject in a future
papet.

The blending ‘surfaces described in this paper have relatively simple parametric represtaations
yet lead to implicit equations of very large algebraic degree or to non-algebraic su-"aces. It would be T

useful to be able to obtain a mi. ==’ surface of low algebraic degree or to verify tha. none are possible.

Acknowledgement

This research was partially supported by the J.S.Army Research Office under Research Grant ..
#DAAL-83-06-G-0085) Co

——— C e m e i ey e e et ermae s s s e mSAREY e m a8 g TS e e o P YTV o MS s STl T e e e aganes e

REFERENCES

1. L M. Gelfand and S. V. Famn,CaIcnlusofVmons,(R.A.Sﬂverman,ms.) Prentice-Hall,
Englewood Cliffs, NJ, 1963.

2. J.L. M. Barbosa and A. G. Colares, Minimal Surfaces in R3, Springer-Verlag, Berlin, 1986.

3. 1. L. Coolidge, Conic Sections and Quadric Surfaces, Oxford University Press, Oxford, 1945.

4. C. M. Hoffman and J. E. Hopcroft, The Potential Method for Blending Surfaces and Corners,
Geometric Modeling (G. Farin, ed.) SIAM, Philadelphia, 1986.

5. L. Holmstrom, Piecewise Quadratic Bler.ti.g of Implicitly Defined Surfaces, SIAM Conference on
Applied Geometry, July 20-24, 1987, Albany, NY.

6. L. P. M. Jorge and W. H. Meeks, The Topology of Complete Minimal Surfaces of Finite Total
Gaussian Curvature, Topology 22 (1983), 203 721.

7. E. Kreyzig, Differential Geometry, University of Toronto Press, Toronto, 1959.

8. R. Leach, Geometric Considerations in Blending Surfaces, to appear.

9. U. Massari and M. Miranda, Minimal Surfaces of Codimension One, North-Holland, Amsterdam,
1984,

10. A. Middleditch and K. Sears, Blend Surfaces for set Theoretic Volume Modelling Systems,
SIGRRAPH Comp. Graphics, 19, 1985, 161-170.

11. M. Mummy, Automated Constant-Radius Blending in a Boundary-representation Solid Modeller,
SIAM Conference on Applied Geometry, July 20-24, 1987, Albany, NY.

12. A. Rockwood and J. Owen, Blending Surfaces in Solid Geometric Modeiing, SIAM Conference on
Geometric Modeling and Robotics, 1985, Albany, NY ‘
13. G. Salmon, A Treatise on the Analytic Geometry of Three Dimensions, Longmans Green and Co.,
New York, 1915.

14. D. M. Y. Sommerville, Analytical Geometry of Three Dimensions, Cambridge University Press,
Cambridge, 1934.

X

-

T A = P vy ot T ot p—— | — -

P

—
-~
—
//
N (T
S+t T

b

f S S S s S .

)

r

L

i

L
> ol |

r 8
L
L
L
r
Ll el

[e s Sumn 4

L

| S ——

f —
) A e D §

J 1L L 1

) M

} A A A -

1

1
i
\
t

]
LJ

0

LW

-\l

HRARN

T T L] |
C

Pr
g

N

———e e e P,

i

N

b

VAN

EXPERIENCES TEACHING
CONCURRENCY IN ADA

Ronald J. Leach
Department of Systems and
Computer Science
School of Engineering

Howard University
Washington, D.C. 20059

ABSTRACT

Many students have great
difficulty understanding concurrent
programming at anything but the most
superficial level. In this paper, we
describe some experience teaching
concurrent programming in Ada and give
some suggestions for implementing the
ideas discussed here.

1. INTRODUCTION:

The concept of concurrent
programming is one of the most
difficult ones for students to
understand. In general, upper level
students have a good understanding of
structured design, analysis of
algorithms, and a rudimentary
knowledge of software engineering.
Such students generally are proficient
in several diferent programming
languages that are used for sequential
programs. In this paper, we describe
some experiences when having students
learn about concurrent programming by
writing programs in Ada. While the
eavironment we describe is specific to
a particular course at Howard
University, many of the experiences
encountered can be carried over to
other environments.

2. THE ENVIRONMENT:
The course in question was an
advanced course in programming

vii.5-40

languages taught to seniors and
graduate students at Howard. The
undergraduate students were majoring
in Computer Systems Engineering and
the graduate students were majoring in
Computer Science; all students were
majoring in the School of

Engineering. All studerts were
proficient in the languages FORTRAN,
Pascal, and C before beginning the
study of Ada. In addition, many of
them were exposed to a variety of
other languages including LISP,
PROLOG, or PL/1.

The topic of concurrent
progranmnming was introduced by means of
some standard examples. The notion of
Petri net was presented and used as a
framework for the discussion of
concurrency in tasking. No other more
formal model of concurrency was used.
This method of presentation is in
agreement with the philosophy in [1]
and [2].

The Ada environment at Howard is
not conducive to the development of
large Ada programs. Most of the Ada
assignments are done on & Digital
Equipment Corporation VAX 1/780 with
4MB of main memory which runs under
VMS. The "compiler" is the classic
NYU AdaEd. Because of the size of the
working set needed for compilation
under this compiler, students were
encouraged to submit jobs for batch
processing. Interactive compilations
and executions were limited to one
terminal at a time, since working sets
of 2MB were allocated to Ada
processes. In addition, students
learned Ada syntax by writing small
Ada programs using the limited Janus
Ada on personal computers. There were
21 students in the class. A much ‘
larger class would have been
unmanageable for this project. Note
however that the assignment of
different projects eliminated the
propagation of correct solutions since
each of the students had a tasking 1

A s

synchronization problem that was at
least superficially different from
that of the other students.-

3. THE PROJECTS:

The students were each assigned a
project for which they were required
to write Ada programs wvhich involved
at least two tasks. In general,the
tasks embodied some simple idea that
the students were very familiar with
at least in the case of sequential
prograns. Thus the difficulty was in
understanding the concurrency and not
in the computation performed by the
individual task.

As an example, one student was
asked to write a program with two
tasks - sort an array of integers and
then search for a key using a binary
search. The student was allowed to
use any sorting algorithm. Thus the
student did not have difficulry
implementing the individual algorithms
for the tasks. The troublesome part
was the implementation of the
synchronization or. communication of
the tasks.

Projects involving similar, but
not identical problems in
synchronization were given to other
students. Some examples of these
assignments are:

1. VWrite a program which uses
tvo tasks to solve quadratic
equations using the quadratic
formula. Each task must perform at
least three aerithmetic operations.

2. WUWrite a program to read an
integer n and to have two tasks. The
tasks are to compute some simple
function f(n) and to find all primes
less than f(n).

3. Write a program to simulate
the donning of socks and shoes.
Putting on socks and putting on shoes
sre to be separate tasks.

4. Write a program to read an
array A of integers and to have two
tesks. The tasks are to sort the
array A in increasing order passing
this sorted array to B and to sort the
erray B in decreasing order.

Clearly the major difficulty for
the students was the synchronization
of tesks. Students were required to
fun their programs four times with the
88me input. Most of the errors in the
Programs due to subtle assumptions
sbout tasking made by the programmer
Secame apparent after four runs.

Student's observations on this
point were interesting. In spite of
several lectures on timing and
synchronization of tasks, lengthy
discussions on the nature of an Ada
"logical processor", and numerous
classroom examples, students did not
believe that programs could give
different results or bomb when given
the same input. The sudden shock when
their program showed this behavior put
the point across better than any
lecture could. Many of the students
indicated that they had seen this kind
of error at some time during program
development. Two of the students were
so shocked by the different behaviour
of the sample runs that they turned in
their projects with signatures of
vitnesses that their programs ran
successfully, at least once.

4. CONCLUSIONS AND SUG:'ESTIONS FOR
IMPLEMENTATION

The students wvho had been through
this assignment seemed tou have a
better understanding of concurrent
tasking in Ada than did students in
previous semesters. The assignment of
programs involving several (perhaps
trivial) tasks which needed to be
synchronized or communicated. This
can be implemented in several ways.

1) Assign different projects to
students (or to small groups of
students) requiring them to have et
least three or four runs of their
program.

2) Assign the same project to
different students (or groups) and
have them compare sample runs on the
same dsta. This should point out
difficulties in tasking.

3) Write a program yourself to do
one of the assignments given above.
Don't think carefully about all
possible orders of execution of the
tasks. Your program is likely to have
different outputs depending on the
actual physical implementation of the
tasks.

REFERENCES
1. Cherry, G., "Parallel Programming
in ANSI Standard Ada", Reston, Reston,
Va., 1984 !
2. Gehani,N., "Ada Concurrent
Programming”, Prentice-Hall, Englewood
Cliffs, N.J., 1984

" "y A—————— -t = = S -

e e —— — i i -y S p— S e

e AR,

AL .

Compur. & Graphics Vol 11, No. 2, pp. 141146, 1987
Printed ia Grost Drisain.

0097-8493/87 $3.00 + 00
© 1987 Pergamon journals Lod

Technical Section

EVALUATING THE PERFORMANCE
OF A USER INTERFACE

RONALD J. LEACH
Department of Systems and Computer Science, School of Engineering,
Howard University, Washington, D.C. 20059

Abstract—A considerable amount of research has been done in the area of human-computer interaction.
High quality human-computer interfaces are especially important when a program needs to perform in
nearly real-time. In this paper, a particular human-computer interface is analyzed. The observations made
are abstracted and generalized to problems in interfaces for process control. Specific benchmarks for evaluation
of interfaces in a real-time or near real-time setting are developed. We show that these benchmarks are more
useful than general performance measures of computer systems for estimating computer performance. We
develop general guidelines for designing interfaces which satisfy severe time constraints and determine to
what extent they follow generally accepted principles for interface design.

1. INTRODUCTION]

A frequent use of computers is in the control of pro-
cesses. In many situations, processes that were con-
trolled by a group of individuals are now controlled
by one or more computers with human operators per-
forming a monitoring function. The operator takes
control only for short periods of time for testing or
when an emergency occurs. The human-machine in-
terface is especially important in such a situation.
Poorly designed systems produce operator boredom
and often cause operator errors. At critical times, the
response time of a poorly designed system may be too
slow for effective process control.

There is a large and growing body of research on
human-computer interfaces, with some design prin-
ciples beginning to emerge. Much of the research in
this area is based either on laboratory experiments or
is anecdotal and based on observations of adherence
to general principles. See the article by Foley, Wallace
and Chan {1] for an excellent survey of resecarch on
the psychology of human-computer interaction with
emphasis on the area of computer graphics.

Often the best user interfaces require extensive use
of computer graphics displays. Using graphics in the
interface increases the load on the computer system
and requires an expenditure for hardware that ranges
from very small (personal computers) to quite large
(high performance color graphics workstations). Thus
the design of a user interface must take into account
several factors such as availability and cost of graphics
hardware, demand on the computing system, and any
requirement for real-time performance.

There is also a large and growing body of research
measuring the performance of computer hardware and
software. Results in this area are often resuits in the
areas of computer architecture, analysis of algorithms,
simulations, reliability models, or some combination
of these areas. See [2], (3], [4], and [5] for typical results
in these areas.

In Section 2, we will briefly discuss the evolution of
several generations of a particular human-computer
interface. This particular interface was studied by the
author at the Goddard Space Flight Center of NASA

while the author was on a NASA/ASEE Facuity Fel--
141

lowship. The results are extended and generalized
greatly in the rest of the paper. Particular emphasis is
given to the development of benchmarks (Section 3)
and guidelines for evaluating and predicting perfor-
mance (Section 4). In general, we show how commonly
accepted principles of design of human-computer in-
terfaces can be combined with specific design require-
ments without significantly degrading performance in
many instances.

2. A TYMICAL IXAMPLE

A control room at the Goddard Space Flight Center
of NASA is responsible for the control and operation
of many spacecraft. A typical spacecraft sends back
information to ground telemetry stations on a regular
basis; the amount and type of information varies when
certain experiments or ground tests are performed. This
telemetry information is then relayed to a ground
computer system which consists of various processors
dedicated to recording telemetry data sent back by a
spacecraft. executing applications programs and con-
trolling communications interfaces to various other
devices. Generally, these ground computers have a
moderately heavy steady-state computing load, which
is well understood at the time that a mission is planned.
There is considerable hardware redundancy; an appii-
cations processor is kept in reserve in case of failure.
Because of the design requirements, any graphics must
be done locally, with little or no load on the applications
computers. Information about the control of the
spacecraft must be available to the control system
within two seconds, with real-time response desirable.

Originally, a control center would have had many
monochrome monitors displaying alphanumeric in-
formation. Redundancy was provided by having more
than one person look at the same information. These
displays created little demand on system resources.
However, training of operators was slow and there was
a relatively high rate of error and fatigue, even for ex-
perienced operators. An operator must monitor many
existing experiments and must initiate others in order
to assure that the spacecraft is functioning properly.

A large amount of human factors research has been
applied to the design of control rooms. In particular,

142 R.J. LEacH

the use of graphics displays and color has had a pro-
nounced effect on operator training and efficiency. The
current trend in control rooms is to provide more in-
formation to fewer operator/analysts by using color
computer graphics displays on CRTs. See (6] and [7]
for more information about the evolution and design
of these dispiays.

Use of graphics displays in contro! room setting falls
into three main categories: monitoring of processes,
testing and control, and display of moving objects.
Monitoring of processes includes plotting of two di-
mensional graphs. Typical graphs are plots of reserve
levels of batteries or fuel consumption over time.
Monitoring of processes also includes showing config-
urations of ground computer networks and availability
of various computers. This type of activity does not
require state of the art graphics equipment. The prin-
cipal need is for rapid screen updating and display of
stored graphical data. Current plans are to use IBM
PC ATs with special graphics cards and storage devices
for these displays (8, 9].

Testing and control invoives operator/analysts de-
ciding which tests to perform on a satellite or spacecraft.
Control rooms for current flights use a touch screen
on a CRT display of a “command panel” which pre-
sents many of the options of tests to be run. These
command panels have evolved from alphanumeric
displays in which an operator typed in the test that
was to be performed. There is some consideration of
saving expensive screen “real estate” by using func-
tional tablets which have some of their commands
preset. .

The major issues here are interface technology, ease
of leaming, and ease of use once the command system
has been mastered. Touch screen technology provides
reasonably fast sensing at moderate cost. {256 by 256
touch points and 50 points per second conversion rate
is a typical example [10].) Operator satisfaction with
the ease of learning and use of this system is high.
Anecdotal evidence that a touch screen is preferable
to a light pen agrees with the findings of [11] and [12).
We note that there is no need for expensive graphics
processors with huge display list memories in the case
of testing and control. The primary need is for input
devices and relatively inexpensive graphics worksta-
ticas,

The most exacting use of computer graphics in a
control room at NASA is in the display of moving
objects such as the space shuttle. The simplest way to
display the shuttle involves using a wire frame model
with no removal of hidden lines. Adding the antennas,
cargo bay doors, and robot arms complicates the pic-
ture so that hidden lines must be removed in order to
make the picture useful. Allowing for three dimensional
rotation means that each vertex in the model of the
shuttle will require the multiplication of a vector by a
matrix. For a reasonably useful wire frame drawing,
this will use up approximately one half of the cpu time
of a minicomputer such as a VAX 11/780, which is
compietely unsatisfactory. Using color graphics rep-
resentation of solid objects with hidden surface removal
and some shading greatly increases the computing load.

The only reasonable solution is to use a powerful
graphics workstation with hardware matrix operations
and many of the necessary algorithms in hardware.
See (2], {3], and [13] for typical estimates of computer
load caused by three dimensional rotation.

3. EVALUATION OF AN INTERFACE: BENCHMARKS

In Section 2 of this paper, we discussed a control
center as an exampie of a user interface and the en-
vironment in which it is used. The evolution of user
interfaces in this setting was discussed. We now turmn
our attention to the evaluation of the performance of
general interfaces in a real time setting. In this section,
we discuss the hardware and software requirements of
interfaces, with emphasis on beachmark programs. Our
primary emphasis is on evaluation of interfaces which
control large numbers of relatively static displays for
monitoring of processes or for testing and control. In-
terfaces for display of the motion of complex objects
will not be considered in this paper.

The first question to be considered is how we will
be able to store the displays. We assume that the logical
organization of the displays is hierarchical, with rela-
tively few levels and a fairly large number of children
possible from each parent node. Results in [12], [1],
and {6] suggest that this is the most effective design for
the menu selection.

We note that there are only a few possibilities for
the storage of data for any display: as collections of
pixels in either compressed or uncompressed form or
else they can be stored as collections of instructions to
a display processor. The various displays can be shown
as entire screens, portions of a screen in a window, or
on several screens. Selections can be made from menus
that range from fixed and permanent as in the case of
hard-coded touch tablets to relatively fixed such as in
touch panels on CRTs and finaily to menus that are
rarely visible as in pop-up or pull-down menu systems.

Only a few colors are needed for a color display of
monitoring and testing of processes. For example, re-
search at NASA indicates that 5 or 6 colors suffice for
control room use {6). Thus the major factors in using

bit mapped displays for monitoring and testing are

screen resolution, size of primary and secondary
memory, speed of access of primary or secondary
memory, speed of screen updating, and of course the
nature of the displays and the way they are stored.
Much of this information can be obtained from man-
ufacturer’s specifications, at least to a first approxi-
mation. However, the performance of an interface also
depends on the speed of various input devices and the
speed and ease with which a human user can interact.
Thus the evaluation of the speed of an interface in a
control system which needs to approximate real time
response can best be estimated by a set of benchmark
programs.

To aid in the determination of actual running times
of the various portions of a user interface, we will use
a notation similar to but not identical to that of [4):

¢ = time to draw a circle,
p(J) = time to draw a polygon with j sides (j > 1),
t = time t0 draw a character,

I8,

Evaluating the performance of & user interface 143

any of the above symbols followed by an fdenotes the

time to fill the object (to fill a character means to fill

the smallest rectangle defining the character).
Finally, we denote the time to write a segment S as

TIME(S)=sum of all(c+p+t+cf+pf+tf)
for all objects in S.

In [4], formulas were presented for measuring the
total time to display all possible displays in a large
scale system for monitoring and process control. In
that paper, we were interested in the way that these
times are modified when a display is stored as a segment
in a structured display file, has to be searched for in a
tree, is in secondary storage, or needs to be compiled.
Our goal here is different, since we are interested in
the interface rather than the speed of rewriting displays.
Thus we will ignore the factors DFILE (used for seg-
ments in a structured display file), SECFILE (for sec-
ondary storage), or COMPILE (for compiling a seg-
ment). We will need to use the factors LEVEL :ad

PROGRAM REPLACE_TEXT;

SEARCH which are related to the actual selection of
a display. We will use the formula

TIME = (LEVEL + 1)eSEARCHs*TIME(S)

to represent the time to write a display to the screen.
Here SEARCH represents the time for searching a
menu and either selecting the desired object for viewing
or determining that the object is not present. LEVEL
will serve as a counter for the length of the path from
the root of the tree to the menu for the desired display.
By convention, the length of a path from the root to
itself is 0.

These benchmark are in the form of pseudocode
programs which will be grouped into sets of three as
follows. The first three programs show the speed of
replacing a screen of text by another screen of text.
These programs will use a procedure TEXTSCREEN
which will write 20 lines of 40 characters each. The
command SYSTEM(TIME) will provide the elapsed
time since the last call to SYSTEM(TIME). The next
set of three programs will be obtained from the first
set by changing graphics instead of text. The last two
sets will duplicate the first two sets in a window eavi-
ronment.

{(+ TIME FOR UPDATING OF TEXT PAGE WITH NO INPUT s)

BEGIN
TEXTSCREEN;
OLDTIME := SYSTEM(TIME);
FOR 1:= 1 TO 100 DO
BEGIN
CLEAR;
TEXTSCREEN;
END;
NEWTIME := SYSTEM(TIME),

TEXT-TIME := (NEWTIME - OLDTIME)/ 100 ;

RETURN(TEXT_TIME) ;
END.

PROGRAM SEARCH_REPLACE_TEXT ;

(= TIME FOR UPDATING OF TEXT PAGE USING SELECTING DEVICE «)

BEGIN

TEXTSCREEN ;

OLDTIME := SYSTEM(TIME);

FOR1:=1 TO 100 DO
BEGIN
SEARCHMENU ;
CLEAR ;
DISPLAY_SELECTED_TEXTSCREEN;
END;

NEWTIME := SYSTEM(TIME) - OLDTIME ;

SEARCH := (NEWTIME - OLDTIME) / 100 - TEXT_TIME ;

RETURN(SEARCH);
END.

Here SEARCHMENU is obtained empirically by having a user make a selection from the appropriate menus.
We expect that the running time of the two programs given above will be very close. Any large difference
indicates that the effective time used by the selection process is large. (We are assuming that the looping itself
takes negligible time. Obvious modifications can be made if this is not the case.)

T R T LT 0t T L WP R I T AT o L IO T S S ot] T W R o e

P

B UM TR e ety -

144 R. J. LEACH

PROGRAM TREE_SEARCH_REPLACE_TEXT ;
(» TIME FOR UPDATING TEXT PAGE WITH SELECTING DEVICE AND
SEARCHING THE TREE OF MENUS »)
BEGIN
TEXTSCREEN;
HEIGHT := 10;
OLDTIME := SYSTEM(TIME) ;
FOR [:= | TO 100 DO
FOR J := | TO HEIGHT DO
BEGIN
SEARCHMENU;,
CLEAR;
DISPLAY_SELECTED_TEXTSCREEN;
CHANGE_LEVEL,
END;
NEWTIME := SYSTEM(TIME);
LEVEL := (NEWTIME - OLDTIME) / (100 « HEIGHT)
- (SEARCH + TEXT.TIME) / HEIGHT ;
RETURN(LEVEL);
END.

A call to the procedure CHANGE_LEVEL involves the changing of menus to a menu for a new level of the
menu tree.

The next set of three programs determines a typical time for updating graphics displays. These programs are
obtained from the first set by replacing “TEXTSCREEN™ by “GRAPHICS.SCREEN™; the details will be
omitted. '

The remaining two sets of three benchmark programs will measure the efficiency of interfaces in a window
environment. Basic concerns here are measurement of the behavior of the window updating system and of the
selection devices when the system is under heavy load. Concerns about stationary, pop-up, and pull-down
menus; screen iayout; and shortcuts through the tree structure hierarchy to frequently used menu items will be
postponed to Section 4.

As before, we will present the programs for the updating of text windows and merely indicate the modification
necessary for having graphics displays in windows.

PROGRAM REPLACE_WINDOW_TEXT;
(s UPDATE TEXT DISPLAYS IN VARIOUS WINDOWS »)
BEGIN
GET_WINDOW_ENVIRONMENT;
SELECT_WINDOW;
CLEAR;
TEXTSCREEN;
OLDTIME := SYSTEM(TIME); .
FORI:=1 TO 100 DO
BEGIN
SELECT_WINDOW;
CLEAR,;
TEXTSCREEN;
END;
NEWTIME := SYSTEM(TIME);
WINDOW_TEXT_TIME := (NEWTIME - OLDTIME)/ 100 ;
RETURN (WINDOW_TEXT._TIME);
END.

PROGRAM SEARCH_REPLACE_WINDOW_TEXT;

(+ USE SELECTION DEVICE; REPLACE TEXT IN WINDOW &»)
BEGIN

GET_WINDOW_ENVIRONMENT ;

SELECT_WINDOW ;

CLEAR ;

TEXTSCREEN ;

OLDTIME := SYSTEM(TIME);

FOR I1:= 1 TO 100 DO

2,

n b i e B T Gt e P el e & o e i o T e R s A URRIIR STy A aE na SRt

»

Evaluating the performance of a user interface 145

BEGIN

SEARCH ;
SELECT_WINDOW ;
CLEAR ;

TEXTSCREEN ;

END;
NEWTIME := SYSTEM (TIME) ;

WINDOW_SEARCH := (NEWTIME - OLDTIME) / 100 - WINDOW_TEXT_TIME ;

RETURN (WINDOW_SEARCH) ;
END.

PROGRAM TREE_SEARCH_REPLACE_WINDOW_TEXT ;
(s CHANGE LEVELS OF MENU SELECTION TREE ; SELECT MENU ITEM ;
REPLACE TEXT SCREEN IN A WINDOW ENVIRONMENT &¢)

BEGIN

GET_WINDOW_ENVIRONMENT ;

SELECT_WINDOW ;

CLEAR ;

TEXTSCREEN ;

HEIGHT := 10 ;

OLDTIME := SYSTEM(TIME);

FOR1:= | TO 100 DO

FOR J := | TO HEIGHT DO

BEGIN
SEARCH ;
SELECT_WINDOW ;
CLEAR ;
TEXTSCREEN ;
CHANGE..LEVEL ;
END;

NEWTIME := SYSTEM(TIME);

WINDOW_LEVEL := (NEWTIME - OLDTIME) / (100 « HEIGHT)
- (WINDOW_SEARCH + WINDOW_TEXT_TIME) / HEIGHT;

RETURN (WINDOW_LEVEL) ;
END.

The remaining three programs are obtained
by replacing “TEXTSCREEN™ by “GRAPHICS_
SCREEN.” These programs suggest how a set of
benchmarks can be written for the evaluation of the
real-time performance of an interface. As such, our
viewpoint is different from that of [5] where the main
concern is the evaluation of overall window updating
speed, rather than the selection process.

These benchmark programs produce the values of
SEARCH and LEVEL as described above. They aiso
give the values of WINDOW_SEARCH and WIN-
DOW_LEVEL, which describe the same quantities in
a window environment. We will use these values in
Section 4.

4. EVALUATION OF AN INTERFACE: ANALYSIS

We now use the quantities SEARCH, LEVEL,
WINDOW_SEARCH, and WINDOW_LEVEL to
analyze the performance of interfaces for monitoring
of processes and for testing and control. Since we are
considering only the case of interfaces in a real-time
environment, we assume the existence of an external
quantity called ABSOLUTE_TIME_LIMIT which
represents the maximum time that is available for all
of the computer operations including the action of the
interface and the retrieval and display of data. Since
CaG 11:2-7

e

the design of the interface is logically independent of
the design of the data storage and retrieval algorithms,
we restrict our attention to a constant MAX_TIME
which is the maximum time that any response of the
interface can have. Clearly,

MAX_TIME + RETRIEVAL_TIME
= ABSOLUTE_TIME_LIMIT.

If

RETRIEVAL_TIME
>= ABSOLUTE.-.TIME_LIMIT,

then no interface is possible that meets the required
conditions and the hardware and software require-
ments for the project must be changed. From this point
on, we assume that some interface is possible within
the constraint of MAX_TIME. We also assume:

1. Some portion of the interface requires graphics.

2. The chosen display hardware and software permit
mixed text and graphics with & variety of input devices.

146 R. J. LeacH

3. That this mixture is available both within a win-
dow management system and outside it.

4. SEARCH < WINDOW_SEARCH.

S. LEVEL < WINDOW_LEVEL.

Assume that there is a total of M options available
from menus and that the menus are arranged hierar-
chically. Then the two extremes of each node of the
tree (except the last) having one child and the root
having M -1 children correspond to times of M
LEVEL and M s SEARCH, respectively. If each of
these numbers is smaller than MAX_TIME, then every
amrangement of menus is feasible from a real-time per-
formance viewpoint and only human factors consid-
erations need be considered. A similar statement holds
for WINDOW_LEVEL and WINDOW_SEARCH.
We thus restrict our attention to the case that at least
one of

M+ LEVEL > MAX_TIME, 14})
M «SEARCH > MAX_TIME, 2)
M« WINDOW_LEVEL > MAX_TIME, (3)
M+ WINDOW_SEARCH >MAX_TIME (4)

is true. Note that we make no assumption about which
of LEVEL and SEARCH or which of WINDOW
—LEVEL and WINDOW_SEARCH is larger.

There are several alternatives availabie to improve
the real-time performance of the interface.

1. If eqn (1) holds and eqn (2) does not, then in-
creasing the degree of each node at the cost of increasing
SEARCH will speed up the worst case performance.

2. If eqn (2) holds but eqn (1) does not, then de-
creasing the degree of each node at the cost of increasing
LEVEL will improve worst case performance.

3. If eqn (1) and eqn (2) both hold, then the only
inexpensive solution is to use windowing. Clearly eqn
(3) and eqn (4) are also true as stated. However, in this
case we note that many different choices may be dis-
played in windows and thus (1) and (2) should be re-
placed by

M« WINDOW_LEVEL /
NUMBER_OF_WINDOWS < MAX_TIME, (3a)

M« WINDOW_SEARCH /
NUMBER_OF WINDOWS < MAX_TIME. (4a)

We apply the same analyses used in cases 1 and 2
in this situation.

4, In each of cases 1-3, we assumed that there were
no shortcuts available in the hierarchical menu struc-
ture. However, many selection devices (such as a three
button mouse) allow for omitting several intermediate
levels of a tree. This should be used for experienced
users to increase operator satisfaction and to increase
speed of the interface. This was pointed out in [1]. We

also suggest that only stationary or pull-down menus
be used for clarity.

5. Not all operations in the monitoring of processes
or testing and control need be carried out in real-time.
Those operations should be on the bottom level of the
tree 30 as to allow faster traversals of the tree in most
cases.

6. Use an additional human operator to reduce the
load on the interface by a factor of 2.

7. Revise the underlying hardware and software.

These guidelines should not be considered compilete
but instead as suggestions for actions when an interface
for real-time activity is predicted to be overioaded.

S5, SUMMARY

In this note, we have described an exampie of a user
interface for monitoring of processes; testing and con-
trol; and display of three dimensional motion and how
it evolved over time. The problems encountered there
were abstracted and generalized in order to develop a
general model for the analysis of the performance of
human computer interfaces for programs which are
used for monitoring of processes and for testing and
control. Emphasis was given to specific benchmarks
and guidelines for the design and evaluation of “real-
time” interfaces, rather than the general performance
measurements often used (5]

REFERENCES

1. J.D.Foley, V. L. Wallace and P. Chan, The human factors
of computer graphics interaction techuniques. /EEE
Computer Graphics and Applications 4, 13-48 (1984),

2. 1. Carlbom and J. Michener, Quantitative analysis of vec-
tor graphics performance, ACM Trans. Graphics 2, 57-
88 (1982).

3. J. H. Clark, The grometry engine, a VLSI system for
mmamumao 16, 127-|34(l982).

4. R. Leach, Graphical control systems and muitiple displays.
Comput. & Graphics 9, 415-422 (1986).

S. R. Zabih and R. Jain, A performance comparison of the
window systems of two LISP machines. Proceedings of
the Fourteenth Annual Computer Science Conference, p.
458, Cincinnati, Ohio (Feb. 1986).

6. C. M. Mitcheil, L. J. Stewart, A. K. Bocast and E. D.
.Murphy, Human Factors Aspects of Control Room De-
sign: Guidelines and Annotated Bibliography. NASA
Technical Memorandum 84942 (1982).

7. C. M. Mitchell, P. Van Balen and K. Moe (Ed.), Pro-
ceedings of the Human Factors Conference in System De-
sign Symposium. NASA/GSFC Human Factors Group,
Greenbelt, MD. (May 1982).

8. NASA, DOCS Delta Critical Design Review. NASA
Technical Memorandum, (Jan., 1984).

9. D. Mandl, D. Cariton and B. Buchanan, COBE Design
Review. NASA Technical Memorandum (Dec, 1984).

10. Microtouch Screen Specifications, Microtouch Systems,
Inc, Woburn, MA (1988).

11. A. Albert, The effect of graphics input devices on perfor-
mance in cursor positioning tasks. Proc. Human Factors
Conference (1982).

12. S. Card, User perceptual mechanisms in the sesrch of
computer command menus. Proc. Human Factors in
Computer Systems Conference, pp. 190-196. Washington,
D.C. (1982).

13. 1. D. Foley and A. Van Dam, Fundamentals of Interactive
Compuz9 er Graphics, Addison-Wesley, Reading, MA
(1982).

W

